) If 5 = 3, find the value of −.
+
Answers
Given, 5
Given, 5 3x−1
Given, 5 3x−1 ÷25=125
Given, 5 3x−1 ÷25=125Since, 25=5×5=5
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5)
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5)
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5)
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2 =(5)
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2 =(5) 3
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2 =(5) 3 [∵a
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2 =(5) 3 [∵a m
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2 =(5) 3 [∵a m ÷a
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2 =(5) 3 [∵a m ÷a n
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2 =(5) 3 [∵a m ÷a n =(a)
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2 =(5) 3 [∵a m ÷a n =(a) m−n
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2 =(5) 3 [∵a m ÷a n =(a) m−n ]
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2 =(5) 3 [∵a m ÷a n =(a) m−n ]⇒(5)
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2 =(5) 3 [∵a m ÷a n =(a) m−n ]⇒(5) 3x−3
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2 =(5) 3 [∵a m ÷a n =(a) m−n ]⇒(5) 3x−3 =(5)
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2 =(5) 3 [∵a m ÷a n =(a) m−n ]⇒(5) 3x−3 =(5) 3
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2 =(5) 3 [∵a m ÷a n =(a) m−n ]⇒(5) 3x−3 =(5) 3
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2 =(5) 3 [∵a m ÷a n =(a) m−n ]⇒(5) 3x−3 =(5) 3 On comparing both sides, we get
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2 =(5) 3 [∵a m ÷a n =(a) m−n ]⇒(5) 3x−3 =(5) 3 On comparing both sides, we get⇒3x−3=3
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2 =(5) 3 [∵a m ÷a n =(a) m−n ]⇒(5) 3x−3 =(5) 3 On comparing both sides, we get⇒3x−3=3⇒3x=6
Given, 5 3x−1 ÷25=125Since, 25=5×5=5 2 And 125=5×5×5=5 3 Therefore, 5 3x−1 ÷(5) 2 =(5) 3 ⇒(5) 3x−1−2 =(5) 3 [∵a m ÷a n =(a) m−n ]⇒(5) 3x−3 =(5) 3 On comparing both sides, we get⇒3x−3=3⇒3x=6⇒x=2