Math, asked by aryandhurve786, 6 months ago

if (5-√3) is one f the roots of quadratic equation x2-10x+2k=0, find the value of k​

Answers

Answered by aryan073
5

Answer (~_^)

(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)

\huge \pink{ \boxed { \blue { \mathfrak{ \overbrace { \overbrace{ \fcolorbox{pink}{aqua}{ \underline{}{ \underline { \pink{ \ddag \: question \ddag}}}}}}}}}}

 \:  \:  \:  \:  \:     \:  \:\clubsuit \bf { \red{if \: (5 -  \sqrt{3} ) \: is \: one \: of \: \: the \: root \: of \: the \: quadratic \: equation}}

 \:  \:  \:  \:         \:\clubsuit \bf{ \purple{given \: equation  \to \ \:  {x}^{2}  - 10x + 2k = 0}}

 \:  \:  \:  \:     \:     \:\mapsto \sf{ \: put \: the \: root \: in \: this \: given \: equation}

 \:  \:  \:  \:  \ \:       \:\mapsto \sf{ {(5 -  \sqrt{3)} }^{2}  - 10(5 -  \sqrt{3} ) + 2k = 0}

 \:  \:  \:  \:       \:\mapsto \sf{(25 + 3 - 10 \sqrt{3} ) - 50 + 10 \sqrt{3}  + 2k = 0}

 \:  \:  \:  \:  \:       \: \mapsto \sf{28 - 10 \sqrt{3}  - 50 + 10 \sqrt{3}  + 2k = 0}

 \:  \:  \:  \:  \:  \:      \:  \mapsto \sf{28 - 50 -  \cancel \pink {10 \sqrt{3}  + 10 \sqrt{3} } + 2k = 0}

 \:  \:  \:  \:  \:       \:\mapsto \sf{ - 22 + 2k = 0}

 \:  \:  \:  \:  \:      \: \mapsto \sf{2k = 22}

 \:  \:  \:  \:  \:     \: \mapsto \sf{k =  \cancel \red{ \frac{22}{2} }   = 11}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \red \bigstar \boxed { \sf \pink{k = 11 \: is \: the \: correct \: answer}}

don't thanks this question OK guys .......

Similar questions