Math, asked by sumedhavishnnoi887, 4 months ago

If 5−4x × 5(x2+4) = 1, then find the value of ‘x’.​

Answers

Answered by shamimaktermazumder
0

Answer:

5-4x×5(x2+4)=1

5-4x×10x+20=1

5+20-4x×10x=1

25-40x=1

-40x=1-25

-40x=-24

x=-24/-40

x=0.6

Therefore, the value of x is 0.6

Answered by pulakmath007
0

The value of x = 2

Given :

\displaystyle \sf{  {5}^{ - 4x}   \times  {5}^{( {x}^{2} + 4) }  = 1}

To find :

The value of x

Formula :

We are aware of the formula on indices that

 \sf{ {a}^{m}  \times  {a}^{n} =  {a}^{m + n}  }

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf{  {5}^{ - 4x}   \times  {5}^{( {x}^{2} + 4) }  = 1}

Step 2 of 2 :

Find the value of x

\displaystyle \sf{  {5}^{ - 4x}   \times  {5}^{( {x}^{2} + 4) }  = 1}

\displaystyle \sf{ \implies {5}^{ (- 4x) +( {x}^{2} + 4) }   = 1}\:  \:  \: \bigg[ \:  \because \: {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}  \bigg]

\displaystyle \sf{ \implies {5}^{ ( {x}^{2}  -  4x + 4) }   = 1}

\displaystyle \sf{ \implies {5}^{ ( {x}^{2}  -  4x + 4) }   =  {5}^{0} }

\displaystyle \sf{ \implies ( {x}^{2}  -  4x + 4)    = 0}

\displaystyle \sf{ \implies{(x - 2)}^{2}      = 0}

\displaystyle \sf{ \implies x - 2= 0}

\displaystyle \sf{ \implies x  = 2}

Hence the required value of x = 2

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. choose the correct alternative : 100¹⁰⁰ is equal to (a) 2¹⁰⁰ × 50¹⁰⁰ (b) 2¹⁰⁰ + 50¹⁰⁰ (c) 2² × 50⁵⁰ (d) 2² + 50⁵⁰

https://brainly.in/question/47883149

2. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

#SPJ3

Similar questions