Math, asked by govindp05, 6 months ago

If -5/7, a, 2 are consecutive terms in an Arithmetic Progression, Find the value of a.

Answers

Answered by snehitha2
7

Answer :

a = 9/14

Step-by-step explanation :

     \underline{\underline{\bf Arithmetic \ Progression:}}

  • It is the sequence of numbers such that the difference between any two successive numbers is constant.
  • In AP,

      a - first term

      d - common difference

      aₙ - nth term

      Sₙ - sum of n terms

  • General form of AP,

         a , a+d , a+2d , a+3d , ..........

  •  Formulae :-

          nth term of AP,

            \boxed{\bf a_n=a+(n-1)d}

                       

        Sum of n terms in AP,

            \boxed{\bf S_n=\frac{n}{2}[2a+(n-1)d]}

_________________________________

Given,

-5/7, a, 2 are consecutive terms in an Arithmetic Progression

we know,

The difference between any two consecutive terms in AP is constant.

         

           \longrightarrow \ \ a -(\frac{-5}{7} )=2-a \\\\ \longrightarrow \ \ a+\frac{5}{7} =2-a \\\\ \longrightarrow \ \ a+a=2-\frac{5}{7} \\\\ \longrightarrow \ \ 2a=\frac{14-5}{7} \\\\ \longrightarrow \ \ 2a=\frac{9}{7} \\\\ \longrightarrow \ \ a=\frac{9}{7 \times 2} \\\\ \longrightarrow \ \ a=\frac{9}{14}

║ The value of a is 9/14.

           

Similar questions