Math, asked by brainlyextra, 5 hours ago

if (5/8)^4n-4=(25/64)^3n+4, find the value of n. ​

Answers

Answered by DennisRitchie
1

Step-by-step explanation:

( \frac{5}{8}  ) {}^{4n - 4}  = ( \frac{25}{64} ) {}^{3n + 4}  \\  \\ ( \frac{5}{8}  ) {}^{4n - 4}  = ( \frac{5 {}^{2} }{8 {}^{2} } ) {}^{3n + 4} \\  \\ ( \frac{5}{8}  ) {}^{4n - 4}  = ( \frac{5}{8} ) {}^{2(3n + 4)} \\  \\ now \:  \: compare \: powers \: of \:  \frac{5}{8}  \\  \\ 4n - 4 = 2(3n + 4) \\  \\ 4n - 6n = 4 + 8  \\  \\  - 2n = 12 \\  \\ n =  \frac{ - 12}{2}  \\  \\ n =  - 6

Answered by Rahul7895
3

Answer:

Question:- Find the value of N

Solution:-

Right here,you got it

( \frac{5}{8})^{4n - 4} = ( \frac{25}{64} )^{3n  + 4}

We can use an identity,if we do make the bases equal

that is

( \frac{5}{8})^{4n - 4} = ( \frac{5}{8} )^{2 \times (3n  + 4)} \\ ( \frac{5}{8})^{4n - 4} = ( \frac{5}{8} )^{6n  + 8}

We know that,if

 {a}^{m}  =  {a}^{n}  \\ m = n

According to the identity

here it is

4n - 4 = 6n  + 8 \\ 4n = 6n + 8 + 4 \\  - 6n + 4n = 12 \\  - 2n = 12 \\ n =  \frac{12}{ - 2}  \\ n =  - 6

therefore the value of

n=-6

Hope it helps

Similar questions