If √5 and -√5 are the roots of the equation 25x² + px + q = 0, then the values of p and q are respectively
Answers
sum of root:- -b/a
so
0 = -p/25
and
p =0
PRODUCT OF ROOT :- C/A
so
-5 =Q/25
Q= -125
Answer:
The value of p and q are - 25√5 and 0 respectively.
Step-by-step-explanation:
The given quadratic equation is 25x² + px + q = 0.
We have given that, √5 & - √5 are roots of the quadratic equation.
We have to find the values of p and q.
By substituting x = √5 in the given equation, we get,
25x² + px + q = 0
⇒ 25 ( √5 )² + p * √5 + q = 0
⇒ 25 * 5 + √5 p + q = 0
⇒ 125 + √5 p + q = 0
⇒ q = - 125 - √5 p - - - ( 1 )
Now, by substituting x = - √5 in the equation, we get,
25x² + px + q = 0
⇒ 25 ( - √5 )² + p * ( - √5 ) + q = 0
⇒ 25 * ( - 5 ) - √5p + q = 0
⇒ - 125 - √5p + ( - 125 - √5 p ) = 0 - - - [ From ( 1 ) ]
⇒ - 125 - √5p - 125 - √5p = 0
⇒ - 250 - 2√5p = 0
⇒ 2 ( - 125 - √5p ) = 0
⇒ - 125 - √5p = 0
⇒ - √5p = 125
⇒ - p = 125 / √5
⇒ - p = ( √5 * √5 * 25 ) / √5
⇒ - p = 25√5
⇒ p = - 25√5
Now, by substituting this value in equation ( 1 ), we get,
q = - 125 - √5 p - - - ( 1 )
⇒ q = - 125 - √5 ( - 25√5 )
⇒ q = - 125 + ( 25 * 5 )
⇒ q = - 125 + 125
⇒ q = 0
∴ The value of p and q are - 25√5 and 0 respectively.