If 5θ and4θ are acute angles satisfying sin 5θ=cos 4θ then,the value of 2 sinθ- √3 tan3θ is
Answers
Question:-
If 5θ and4θ are acute angles satisfying sin 5θ=cos 4θ then,the value of 2 sinθ- √3 tan3θ is
Given : sin 5θ = cos 4θ and 5θ and 4θ are acute angles.
sin 5θ = cos 4θ
cos (90° - 5θ) = cos 4θ
[cos (90° - θ) = sin θ]
On equating both sides,
(90° - 5θ) = 4θ
90° = 5θ + 4θ
90° = 9θ
θ = 90°/9
θ = 10°
The value of 2 sin 3θ - √3 tan 3θ :
= 2 sin 3 (10°) - √3 tan 3(10°)
= 2 sin 30° - √3 tan 30°
= 2 (½) - √3 (1/√3)
[sin 30° = ½ , tan 30° = 1/√3]
= 1 - 1
= 0
2 sin 3θ - √3 tan 3θ = 0
Hence, the value of 2 sin 3θ - √3 tan 3θ is 0 .
hope it helps you..
Answer:
sin 5θ = cos 4θ (acute)
cos (90° - 5θ) = cos 4θ since cos (90° - θ) equating both
(90° - 5θ) = 4θ
90° = 5θ + 4θ
90° = 9θ
θ = 90°/9=10
The value of 2 sin 3θ - √3 tan 3θ :
= 2 sin 3 (10°) - √3 tan 3(10°)
= 2 sin 30° - √3 tan 30°
= 2 (1/2) - √3 (1/√3) [sin 30° = ½ , tan 30° = 1/√3]
= 1 - 1=0
therefore value of 2 sin 3θ - √3 tan 3θ is 0 .
plz mark