Math, asked by badolagauri2108, 6 months ago

If 5 cos θ – 12 sin θ = 0, find the value of (sinθ+cosθ)/(2cosθ-sinθ).​

Answers

Answered by halcyonpast
4

Answer:

5cosx = 12sinx

or, sinx/cosx =5/12

or, tanx = 5/12

secx = 13/12

cosx= 12/13

sinx = 5/13

cosx+sinx = 17/13

2cosx-sinx= 19/13

thus your answer is 17/19

Answered by Anonymous
12

Answer:

</p><p>5cosθ−12sinθ=0</p><p></p><p></p><p></p><p>

⇒5cosθ=12sinθ</p><p></p><p>

⇒cotθ= \frac{12}{5}

 \frac{sinθ + cosθ}{2cosθ - sinθ}  =  \frac{sinθ(1 + cotθ)}{sinθ(2cotθ - 1)}

 =  \frac{1 +  \frac{12}{5} }{2 \times  \frac{12}{5}  - 1}

 =  \frac{ \frac{17}{5} }{ \frac{24}{5} - 1 }

 =  \frac{ \frac{17}{5} }{ \frac{24 - 5}{5} }

 =  \frac{17}{5}  \times  \frac{5}{19}

 =  \frac{17}{19}

Similar questions