Math, asked by bikashphysics0pd1h9e, 1 year ago

if 5 cos thetha +7 thetha =7 prove that 5 sin thetha -7 cos thetha =+-5

Answers

Answered by Pitymys
3

Given  5\cos \theta +7 \sin \theta=7 . Now let

 x=5\sin \theta -7 \cos \theta .

Square and add the two equations. then

 (5\cos \theta +7 \sin \theta)^2+(5\sin \theta -7 \cos \theta)^2=7^2+x^2\\<br />25\cos^2 \theta +7^2 \sin^2 \theta+35\cos \theta \sin \theta+25\sin^2 \theta +7^2 \cos^2 \theta-35\cos \theta \sin \theta=7^2+x^2\\<br />25(\cos^2 \theta +\sin^2 \theta)+7^2 (\sin^2 \theta+ \cos^2 \theta)+35\cos \theta \sin \theta -35\cos \theta \sin \theta=7^2+x^2\\<br />25+7^2 +0=7^2+x^2\\<br />x^2=25\\<br />x=\pm 5

The proof is complete.

Similar questions