Math, asked by shyllayasmin, 6 hours ago

if 5 cot A=8, then the value of sinA and secA is​

Answers

Answered by dcmallik1396
9

Step-by-step explanation:

 \cot( \alpha )  =  \frac{8}{5}  \\  =  >  \frac{base}{perpendicuar}  =  \frac{8}{5}  \\  \\  =  > height =   \sqrt{{8}^{2}  +  {5}^{2} } =  \sqrt{64 + 25} =  \sqrt{89}

 \sin( \alpha )  =  \frac{perpendicular}{height} =  \frac{5}{ \sqrt{89} }  \\

 \cos( \alpha )  =  \frac{base}{height}  =  \frac{8}{ \sqrt{89} }

 \sec( \alpha )  =  \frac{1}{ \cos( \alpha ) }  =  \frac{ \sqrt{89} }{8}

Please Mark Me as Brainlist

Answered by hukam0685
1

Step-by-step explanation:

Given: 5 \: cot \: A = 8 \\

To find: Value of sinA\:  \: and \: sec \: A

Solution:

Identities used:

1)\:1 +  {cot}^{2} A =  {cosec}^{2}A

2)\:sin \: A =  \frac{1}{cosec \: A}  \\

3)\:1  -  {sin}^{2} A=  {cos}^{2} A \\

4)\:sec \: A =  \frac{1}{cos \: A} \\

Step 1: Find sin \: A

Use identity 1 and 2 written above.

1 +  \frac{64}{25}  =  {cosec}^{2}A \\

 {cosec}^{2} A=  \frac{25 + 64}{25}  \\

cosec\:A=  \frac{ \sqrt{89} }{5}  \\

Thus,

sin \: A =  \frac{5}{ \sqrt{89} }  \\

Step 2: Find sec\:A

Use identity 3 and 4.

 {cos}^{2} A = 1 -  \frac{25}{89}  \\

 {cos}^{2} A =  \frac{89 - 25}{89}  \\

cos \: A =  \frac{8}{ \sqrt{89} }  \\

Thus,

sec \: A =  \frac{ \sqrt{89} }{8}  \\

Final answer:

\bf \green{sin \: A =  \frac{5}{ \sqrt{89} }}  \\

\bf \red{sec \: A =  \frac{ \sqrt{89} }{8}}  \\

Hope it helps you.

To learn more on brainly:

Q 16. The value of is:

sec 60° - cos 30° + tan 45º

sin 60° + cot 45° - cosec 30°https://brainly.in/question/47792126

iii) cos^2 15° - cos^2 30° + cos^2 45° - cos^2 60° + cos^2 75° = 1/2

please help me solve this

https://brainly.in/question/43525162

Similar questions