Math, asked by shariqueislam175, 5 months ago

If 5 cot B = 12, then the value of cosec B + Sec B is ________. ​

Answers

Answered by SuitableBoy
82

{\huge{\underline{\underline{\frak{Question}}}}}

If , 5 cot B = 12 , then find the value of cosec B + sec B .

{\huge{\underline{\underline{\frak{Solution\checkmark}}}}}

Given :

  • 5 cot B = 12

To Find :

  • cosec B + sec B = ?

Answer :

Since ,

 \rm \: 5 \cot(b) = 12

 \rm \: cot(b) =  \dfrac{12}{5}

 \rm \:  \dfrac{base}{perpendicular}  =  \dfrac{12}{5}

Consider a right angled triangle ,

in which ,

Base = 12x

Perpendicular = 5x

Using , Pythagoras Theorem ,

(Hypotenuse)² = (Base)² + (Perpendicular)²

(Hypotenuse)² = (12x)² + (5x)²

(Hypotenuse)² = 144x² + 25x²

 \rm \: hypotenuse \:  =  \sqrt{169 {x}^{2} }

 \boxed{ \rm \: hypotenuse = 13x}

Now , Finding the value of required term .

 \mapsto \rm \: cosec(b) + sec(b)

 \implies \rm \:  \frac{hypotenuse}{perpendicular}  +  \frac{hypotenuse}{base}  \\

 \implies \rm \:  \frac{13x}{5x}  +  \frac{13x}{12x}  \\

 \implies \rm \:  \frac{13x \times 12 + 13x \times 5}{12 \times 5x}  \\

 \implies \rm \:  \frac{156x + 65x}{60x}  \\  \\  \implies \:  \frac{221 \cancel{x}}{60 \cancel{x}}

 \implies \: \frac{221}{60}  \\

So ,

 \mapsto \boxed{ \rm \: cosec(b) + sec(b) =  \frac{221}{60} }

_________________________

Formula Used :

  •  \sf \: cosec( \theta) =  \frac{hypotenuse}{perpendicular} \\
  •  \sf \: sec( \theta) =  \frac{hypotenuse}{base}  \\

Attachments:
Similar questions