Math, asked by samyakchincholikar, 7 months ago

If -5 is a root of quadratic equation 2x^2+px−15=0 and the quadratic equation p(x^2+x)+k=0 has equal roots, then find the value of k

Answers

Answered by MaheswariS
0

\underline{\textsf{Given:}}

\textsf{-5 is a root of the equation}\;\mathsf{2x^2+px-15=0}

\textsf{and}\;\mathsf{p(x^2+x)+k=0}\;\textsf{has equal roots}

\underline{\textsf{To find:}}

\textsf{The value of p and k}

\underline{\textsf{Solution:}}

\textsf{Let the other root of}

\mathsf{2x^2+px-15=0}\;\textsf{be 'u'}

\bf\textsf{Product of the roots:}

\mathsf{u(-5)=\dfrac{-15}{2}}

\mathsf{u=\dfrac{3}{2}}

\bf\textsf{Sum of the roots:}

\mathsf{\dfrac{3}{2}+(-5)=\dfrac{-p}{2}}

\mathsf{\dfrac{3-10}{2}=\dfrac{-p}{2}}

\mathsf{\dfrac{-7}{2}=\dfrac{-p}{2}}

\implies\boxed{\mathsf{p=7}}

\textsf{Since}\;\mathsf{px^2+px+k=0}\textsf{has equal roots, we have}

\mathsf{b^2-4ac=0}

\mathsf{p^2-4(p)(k)=0}

\mathsf{7^2-4(7)(k)=0}

\mathsf{49-28\,k=0}

\mathsf{49=28\,k}

\mathsf{k=\dfrac{49}{28}}

\implies\boxed{\mathsf{k=\dfrac{7}{4}}}

Find more:

The equation whose roots are smaller by 1 than those of 2x2 – 5x + 6 = 0 is 

a) 2x^2– 9x + 13 = 0

b) 2x^2– x + 3 = 0 

c) 2x^2+ 9x + 13 = 0

d) 2x^2 + x + 3 = 0​

https://brainly.in/question/16821146

If x^2-bx/ax-c =m-1/m+1

has roots which are numerically equal but of opposite sign, then the value of'm'must be

(A) a-b/a+b

(B) a+b/a-b

(C) O

(D) 1

soneone please answer this

https://brainly.in/question/9525569

If alpha,beta are the roots of equation x^2-5x+6=0 and alpha > beta then the equation with the roots (alpha+beta)and (alpha-beta) is

https://brainly.in/question/5731128

1)If alpha and beta are zeroes of quadratic polynomial x2 -(k+6x)+2(2k-1) 

find k if alpha +beta=1/2alpha beta 

2)If alpha and beta are zeroes of x2-6x+a, find the value of a if 3alpha+2beta=20

https://brainly.in/question/16419985

Similar questions