if -5 is a root of the quadratic equation 2x^2+px-15=0 and the quadratic equation p[x^2+x}+k=0 has equal roots,find the value of k.
Answers
Answered by
4
Let the other root be A
therefore,
-5*A=c/a
-5*A= -15/2
A=3/2
now 3/2-5= -p/2
-7/2= -p/2
p= -7
now as equal roots b^2-4ac=0
7^2-4(7)(k)=0
49-28k=0
49=28k
k=7/4
therefore,
-5*A=c/a
-5*A= -15/2
A=3/2
now 3/2-5= -p/2
-7/2= -p/2
p= -7
now as equal roots b^2-4ac=0
7^2-4(7)(k)=0
49-28k=0
49=28k
k=7/4
Answered by
3
Root is -5
2x² + px - 15 = 0 ......(1)
p(x² + x ) + k = 0 ……(2)
2x² + px - 15 = 0
2(-5)² + p(-5) - 15 = 0
2 × 25 - 5p - 15 = 0
50 - 5p - 15 = 0
35 - 5p = 0
5p = 35
p = 7
p(x² + x ) + k = 0
7(x² + x ) + k = 0
7x² + 7x + k = 0
Here we have,
D = b² - 4ac
D = 0
b² - 4ac = 0
7² - 4(7)(k) = 0
49 - 28k = 0
49 = 28k
Similar questions