Math, asked by dinkarmishra8174, 11 months ago

If -5 is one of the zeroes of 2x^2+px-15.quadratic polynomial p(x^2+x)+k has both zeroes equal to one another then find k.

Answers

Answered by honeyeee
5

Answer:

Step-by-step explanation:

first solve fro 2x^2+px-15\\

given -5 is its zero that means

2(-5)^2+p(-5)-15=0

after solving this you will get p=-13

put in next one you get

-13(x^2+x)+k    =-13x^2-13x+k  it has both zero equal the apply rule

discrement is zero i.e b^2-4ac=0

Answered by SwiftTeller
188

Appropriate Question:

 \sf{If \:  -5  \: is  \: one  \: of \:  the \:  zeroe s \:  o f \:  2x^2+px-15 \: quadratic \:  polynomial } \\ \sf{ p(x^2+x) \: +k  has \:  both \:  zeroes  \: equal  \: to  \: one  \: another \:  then  \: find \:  k.}

Solution:

 \sf{Here, - 5 \: is \: a \: zero \: of \: p(x)= {2x}^{2}  + px - 15.} \\

\sf{Then, \: p( - 5) = 0 } \\

: \implies \sf{2 {( - 5)}^{2} + p + 35 = 0 } \\ : \implies \sf{2(25) - 5 - 15 = 0} \\  : \implies \sf{50 - 5p - 15 = 0} \\: \implies \sf{ - 5p + 35 = 0}  \\ : \implies \sf{ - 5p =  - 35} \\: \implies  \underline{\sf{ \fbox{p = 7}}} \sf{..(i)}

 \sf{We \: Have, \: f(x) = p( {x}^{2} + x) + k = 7( {x}^{2}   + x) + k} \:   \:  \: ... [From \: (i)] \\ : \implies \sf{f(x)=p(x) = 7 {x }^{2}  + 7x + k.} \\

 \sf{It \: is \: given  \: that  \: both \: the \: zeroes \: of \: f(x) \: are  \: equal, i.e., \alpha  =  \beta .}

Then,

 \sf{ \alpha  +  \beta =  \frac{ - 7}{7}  } \\ : \implies \sf{ \alpha  +  \alpha  =  - 1} \\ : \implies \sf{2 \alpha  =  - 1} \\ : \implies \sf{ \alpha  =  \frac{ - 1}{2} }

Also,

: \implies \sf{ \alpha  \beta  =  \frac{k}{7} } \\ : \implies \sf{ \frac{ - 1}{2} \times   \bigg[ \frac{-1}{2} \bigg]  =  \frac{k}{7}  } \\ : \implies \sf{ \frac{1}{4}  =  \frac{k}{7} } \\ : \implies \sf{k =  \frac{7}{7} }

 \large \mathfrak{Hence,  \: k =  \frac{7}{4} .} \\

Final Answer:

  \LARGE\mathfrak{k =  \frac{7}{4} }

Similar questions