if 5 is the zero of the polynomial x^2-kx-15, find the value of K
Answers
x=5
x=5putting x in equation
x=5putting x in equationp(x)=x^2-kx-15=0
x=5putting x in equationp(x)=x^2-kx-15=0=(5)^2-k(5)-15=0
x=5putting x in equationp(x)=x^2-kx-15=0=(5)^2-k(5)-15=0=25-5k-15=0
x=5putting x in equationp(x)=x^2-kx-15=0=(5)^2-k(5)-15=0=25-5k-15=0=10-5k=0
x=5putting x in equationp(x)=x^2-kx-15=0=(5)^2-k(5)-15=0=25-5k-15=0=10-5k=0=-5k=-10
x=5putting x in equationp(x)=x^2-kx-15=0=(5)^2-k(5)-15=0=25-5k-15=0=10-5k=0=-5k=-10=k=-10/-5
x=5putting x in equationp(x)=x^2-kx-15=0=(5)^2-k(5)-15=0=25-5k-15=0=10-5k=0=-5k=-10=k=-10/-5=k=2
x=5putting x in equationp(x)=x^2-kx-15=0=(5)^2-k(5)-15=0=25-5k-15=0=10-5k=0=-5k=-10=k=-10/-5=k=2Value of k is 2
I hope it halp u
Explanation:
x=5
putting x in equation
p(x)=x^2-kx-15=0
=(5)^2-k(5)-15=0
=25-5k-15=0
=10-5k=0
=-5k=-10
=k=-10/-5
=k=2
Value of k is 2
Hope its helpful for you dear ❤❤