English, asked by kshitijbhu744, 7 months ago

if 5 is the zero of the polynomial x^2-kx-15, find the value of K

Answers

Answered by amitesh66
10

x=5

x=5putting x in equation

x=5putting x in equationp(x)=x^2-kx-15=0

x=5putting x in equationp(x)=x^2-kx-15=0=(5)^2-k(5)-15=0

x=5putting x in equationp(x)=x^2-kx-15=0=(5)^2-k(5)-15=0=25-5k-15=0

x=5putting x in equationp(x)=x^2-kx-15=0=(5)^2-k(5)-15=0=25-5k-15=0=10-5k=0

x=5putting x in equationp(x)=x^2-kx-15=0=(5)^2-k(5)-15=0=25-5k-15=0=10-5k=0=-5k=-10

x=5putting x in equationp(x)=x^2-kx-15=0=(5)^2-k(5)-15=0=25-5k-15=0=10-5k=0=-5k=-10=k=-10/-5

x=5putting x in equationp(x)=x^2-kx-15=0=(5)^2-k(5)-15=0=25-5k-15=0=10-5k=0=-5k=-10=k=-10/-5=k=2

x=5putting x in equationp(x)=x^2-kx-15=0=(5)^2-k(5)-15=0=25-5k-15=0=10-5k=0=-5k=-10=k=-10/-5=k=2Value of k is 2

I hope it halp u

Answered by khushisonalisinha071
1

Explanation:

x=5

putting x in equation

p(x)=x^2-kx-15=0

=(5)^2-k(5)-15=0

=25-5k-15=0

=10-5k=0

=-5k=-10

=k=-10/-5

=k=2

Value of k is 2

Hope its helpful for you dear

Similar questions