Chemistry, asked by queenbella1519, 1 month ago

If 5 mol of liquid A and 10 mol of liquid B are mixed to form an ideal solution then the total pressure of the solution toll be (P = 200 mm Hg and P400 mm Hg)
1)310 mm Hg
2)423 mm Hg
3)333.3 mm Hg
4)410 mm Hg​

Answers

Answered by Ataraxia
97

Given :-

Number of moles of liquid A = 5 mol

Number of moles of liquid B = 10 mol

Vapour pressure of liquid A = 200 mm Hg

Vapour pressure of liquid B = 400 mm Ug

To Find :-

Total pressure of the solution

Solution :-

We know :-

\underline{ \bf P_{total} = P_{A}^{\circ}X_{A} +  P_{B}^{\circ}X_{B}}

 \bullet \sf  \: X_{A} =  \dfrac{n_{A}}{n_{A} + n_{B}}

 : \implies \sf   \: X_{A} =  \dfrac{5}{5 + 10}

 :  \implies \sf   X_{A} =  \dfrac{5}{15}

 : \implies \sf X_{A} =  \dfrac{1}{3}

\bullet \sf  \: X_{B} =  \dfrac{n_{B}}{n_{A} + n_{B}}

 :  \implies \sf X_{B} =  \dfrac{10}{5 + 10}

 : \implies \sf X_{B} =  \dfrac{10}{15}

 : \implies \sf X_{B} =  \dfrac{2}{5}

\bf  P_{total} = P_{A}^{\circ}X_{A} +  P_{B}^{\circ}X_{B}

 : \implies \sf  P_{total} = 200 \times \dfrac{1}{3} +  400 \times \dfrac{2}{3}

 : \implies \sf  P_{total} = 66.67 +  266.67

 : \implies \sf  P_{total} = 333.3

Total pressure :- 333.3 mm Hg

Correct option :- C

Answered by Anonymous
175

Answer:

Given :-

  • 5 mol of liquid A and 10 mol of liquid B are mixed to form an ideal solution.
  • [Pᴀ = 200 mm Hg, Pʙ = 400 mm Hg]

To Find :-

  • What is the total pressure of the solution.

Formula Used :-

\clubsuit Total Pressure Formula :

\mapsto \sf\boxed{\bold{\pink{P_T =\: P^{\circ}_AX_A + P^{\circ}_BX_B}}}\\

Solution :-

{\small{\bold{\purple{\underline{\leadsto\: In\: case\: of\: X_A\: :-}}}}}

\bigstar\: \: \sf\boxed{\bold{\pink{X_A =\: \dfrac{n_A}{n_A + n_B}}}}\\

where,

  • \sf n_A = Number of Moles in liquid A
  • \sf n_B = Number of Moles in liquid B

Given :

  • Number of Moles in liquid A = 5 moles
  • Number of Moles in liquid B = 10 moles

According to the question by using the formula we get,

\implies \sf X_A =\: \dfrac{5}{5 + 10}

\implies \sf X_A =\: \dfrac{\cancel{5}}{\cancel{15}}

\implies \sf X_A =\: \dfrac{1}{3}

\implies \sf\bold{\green{X_A =\: \dfrac{1}{3}}}

{\small{\bold{\purple{\underline{\leadsto\: In\: case\: of\: X_B\: :-}}}}}\\

\bigstar\: \: \sf\boxed{\bold{\pink{X_B =\: \dfrac{n_B}{n_A + n_B}}}}\\

where,

  • \sf n_A = Number of Moles in liquid A
  • \sf n_B = Number of Moles in liquid B

Given :

  • Number of Moles in liquid A = 5 moles
  • Number of Moles in liquid B = 10 moles

According to the question by using the formula we get,

\implies \sf X_B =\: \dfrac{10}{5 + 10}

\implies \sf X_B =\: \dfrac{\cancel{10}}{\cancel{15}}

\implies \sf X_B =\: \dfrac{2}{3}

\implies \sf\bold{\green{X_B =\: \dfrac{2}{3}}}

Now, we have to find the total pressure of the solution :

Given :

  • Vapour Pressure Of Liquid A = 200 mm Hg
  • Vapour Pressure Of Liquid B = 400 mm Hg

According to the question by using the formula we get,

\longrightarrow \sf P_T =\: 200 \times \dfrac{1}{3} + 400 \times \dfrac{2}{3}

\longrightarrow \sf P_T =\: \dfrac{200}{3} + \dfrac{800}{3}

\longrightarrow \sf P_T =\: \dfrac{200 + 800}{3}

\longrightarrow \sf P_T =\: \dfrac{1000}{3}

\longrightarrow \sf\bold{\red{P_T =\: 333.3\: mm\: Hg}}

\therefore The total pressure of the solution is 333.3 mm Hg.

Hence, the correct options is option no (3) 333.3 mm Hg.

Similar questions