Math, asked by ragavi56, 1 year ago

if 5^-p=4^-q=20^r;show that 1/p+1/q+1/r=0

Answers

Answered by ShuchiRecites
55
\textbf{ Hello Mate! }

 {5}^{ - p}  =  {4}^{ - q}  =  {20}^{r}  = k \\ 5 =  {k}^{ \frac{ - 1}{p} }  \\ 4 =  {k}^{ \frac{ - 1}{q} }  \\ 20 =  {k}^{ \frac{1}{r} }  \\  \\ 4 \times 5 = 20 \\  {k}^{ \frac{ - 1}{p} }  \times  {k}^{ \frac{ - 1}{q} }  =  {k}^{ \frac{1}{r} }  \\  \frac{ - 1}{p}  +  \frac{( - 1)}{q}  =  \frac{1}{r}  \\ 0 =  \frac{1}{r}  +  \frac{1}{p}  +  \frac{1}{q}  \: or \\  \frac{1}{p}  +  \frac{1}{p}  +  \frac{1}{r}  = 0

\boxed{ \textsf{ Hence\:proved }}

Have great future ahead!
Answered by Sharad001
117

Question :-

 \sf \: \:  if \: {5}^{ - p}  =  {4}^{ - q}  =  {20}^{r} \:  \\  \sf \: prove \: that \:  \frac{1}{p}  +  \frac{1}{q}  +  \frac{1}{r}  = 0

Proof :-

We have ,

 \rightarrow \sf \: {5}^{ - p}  =  {4}^{ - q}  = 20r \:   = c(say)\\  \\  if \\  \implies \sf  {5}^{ - p}  = c \\  \sf taking \:  \log \:on \: both \: sides\\  \implies \sf - p \log5 =  \log c \\  \\  \implies \sf \log5 =  -  \frac{1}{p}  \log c \:  \:  \: .....eq.(1) \\ if \:  \\  \implies \sf  {4}^{ - q}  = c \\ \sf taking  \: \log \: on \: both \: sides \\  \\  \implies \sf   \log4 =  \frac{ - 1}{q}  \log c \:  \:  \:  \: ....eq.(2) \\  \\

\________________/

now we have ,

 \rightarrow \sf \:  {20}^{r}  = c \\  \:  \\  \sf  \: taking  \: \log \: on \: both \: sides \\  \\  \rightarrow \sf r \log20 =  \log c \\  \\  \rightarrow \sf \log20 =  \frac{1}{r}  \log c \\  \\  \rightarrow \sf \log (5 \times 4) =  \frac{1}{r} \log c  \:  \\  \sf  \because \log \: mn =  \log m +  \log n \\  \therefore \\  \rightarrow \sf\log5 +  \log4 =  \frac{1}{r}  \log c \\  \\ \sf from \: eq.(1) \:  \: and \: eq.(2) \\  \\  \rightarrow \sf \frac{ - 1}{p}  \log c -  \frac{1}{q}  \log c =  \frac{1}{r}  \log c \\  \\  \rightarrow \sf \log c \{ -  \frac{1}{p}  -  \frac{1}{q}  \} =  \frac{1}{r} \log c  \\  \\  \rightarrow \boxed{ \sf{ \frac{1}{p}  +  \frac{1}{q} +  \frac{1}{r}   = 0}}

hence proved .

\________________/

Similar questions