If 5^-p=4^-q=20r . Prove that 1/p+1/q+1/r=0
Answers
Question:
If 5^(-p) = 4^(-q) = 20^r , then prove that ;
1/p + 1/q + 1/r = 0.
Note:
✓ log(A•B) = log(A) + log(B)
✓ log(A/B) = log(A) - log(B)
✓ log(A^B) = B•log(A)
Solution:
Let ,
5^(-p) = 4^(-q) = 20^r = k (say) -------(1)
{where k is any constant}
Now,
=> 5^(-p) = k {using eq-(1)}
=> log{5^(-p)} = log(k)
=> (-p)•log(5) = log(k)
=> log(5) = (-1/p)•log(k) --------(2)
Similarly,
=> 4^(-q) = k {using eq-(1)}
=> log{4^(-q)} = log(k)
=> (-q)•log(4) = log(k)
=> log(4) = (-1/q)•log(k) ----------(3)
Similarly,
=> 20^r = k {using eq-(1)}
=> log{20^r} = log(k)
=> r•log(20) = log(k)
=> log(20) = (1/r)•log(k)
=> log(5•4) = (1/r)•log(k)
=> log(5) + log(4) = (1/r)•log(k)
=> (-1/p)•log(k) + (-1/q)•log(k) = (1/r)•log(k)
{using eq-(2) and eq-(3)}
=> (-1/p -1/q)•log(k) = (1/r)•log(k)
=> -1/p -1/q = 1/r
=> 0 = 1/p + 1/q + 1/r
=> 1/p + 1/q + 1/r = 0
Hence proved.
Question :-
Proof :-
We have ,
\________________/
now we have ,
hence proved .
\________________/
#answerwithquality