Math, asked by mehulumat2, 8 months ago

If 5^-p=4^-q=20r . Prove that 1/p+1/q+1/r=0​

Answers

Answered by Anonymous
5

Question:

If 5^(-p) = 4^(-q) = 20^r , then prove that ;

1/p + 1/q + 1/r = 0.

Note:

✓ log(A•B) = log(A) + log(B)

✓ log(A/B) = log(A) - log(B)

✓ log(A^B) = B•log(A)

Solution:

Let ,

5^(-p) = 4^(-q) = 20^r = k (say) -------(1)

{where k is any constant}

Now,

=> 5^(-p) = k {using eq-(1)}

=> log{5^(-p)} = log(k)

=> (-p)•log(5) = log(k)

=> log(5) = (-1/p)•log(k) --------(2)

Similarly,

=> 4^(-q) = k {using eq-(1)}

=> log{4^(-q)} = log(k)

=> (-q)•log(4) = log(k)

=> log(4) = (-1/q)•log(k) ----------(3)

Similarly,

=> 20^r = k {using eq-(1)}

=> log{20^r} = log(k)

=> r•log(20) = log(k)

=> log(20) = (1/r)•log(k)

=> log(5•4) = (1/r)•log(k)

=> log(5) + log(4) = (1/r)•log(k)

=> (-1/p)•log(k) + (-1/q)•log(k) = (1/r)•log(k)

{using eq-(2) and eq-(3)}

=> (-1/p -1/q)•log(k) = (1/r)•log(k)

=> -1/p -1/q = 1/r

=> 0 = 1/p + 1/q + 1/r

=> 1/p + 1/q + 1/r = 0

Hence proved.

Answered by Sharad001
122

Question :-

 \sf \: \:  if \: {5}^{ - p}  =  {4}^{ - q}  =  {20}^{r} \:  \\  \sf \: prove \: that \:  \frac{1}{p}  +  \frac{1}{q}  +  \frac{1}{r}  = 0

Proof :-

We have ,

 \rightarrow \sf \: {5}^{ - p}  =  {4}^{ - q}  = 20r \:   = c(say)\\  \\  if \\  \implies \sf  {5}^{ - p}  = c \\  \sf taking \:  \log \:on \: both \: sides\\  \implies \sf - p \log5 =  \log c \\  \\  \implies \sf \log5 =  -  \frac{1}{p}  \log c \:  \:  \: .....eq.(1) \\ if \:  \\  \implies \sf  {4}^{ - q}  = c \\ \sf taking  \: \log \: on \: both \: sides \\  \\  \implies \sf   \log4 =  \frac{ - 1}{q}  \log c \:  \:  \:  \: ....eq.(2) \\  \\

\________________/

now we have ,

 \rightarrow \sf \:  {20}^{r}  = c \\  \:  \\  \sf  \: taking  \: \log \: on \: both \: sides \\  \\  \rightarrow \sf r \log20 =  \log c \\  \\  \rightarrow \sf \log20 =  \frac{1}{r}  \log c \\  \\  \rightarrow \sf \log (5 \times 4) =  \frac{1}{r} \log c  \:  \\  \sf  \because \log \: mn =  \log m +  \log n \\  \therefore \\  \rightarrow \sf\log5 +  \log4 =  \frac{1}{r}  \log c \\  \\ \sf from \: eq.(1) \:  \: and \: eq.(2) \\  \\  \rightarrow \sf \frac{ - 1}{p}  \log c -  \frac{1}{q}  \log c =  \frac{1}{r}  \log c \\  \\  \rightarrow \sf \log c \{ -  \frac{1}{p}  -  \frac{1}{q}  \} =  \frac{1}{r} \log c  \\  \\  \rightarrow \boxed{ \sf{ \frac{1}{p}  +  \frac{1}{q} +  \frac{1}{r}   = 0}}

hence proved .

\________________/

#answerwithquality

Similar questions