Math, asked by prachi200559, 9 months ago

if 5-root 3 /2+root 3 = x+y root3 find x and y​

Answers

Answered by Dead3ill
45

Answer:

x = 13 ; y = -7

Step-by-step explanation:

refer the attachment

Attachments:
Answered by ArunSivaPrakash
5

Given:

\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y \sqrt{3}.

To Find:

We have to find out the values of x and y.

Solution:

Given that, \frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y \sqrt{3}.

Rationalising the denominator of \frac{5 - \sqrt{3}}{2 + \sqrt{3}}, we get,

\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = \frac{5 - \sqrt{3}}{2 + \sqrt{3}} . \frac{2 - \sqrt{3}}{2 - \sqrt{3}}

= \frac{(5 - \sqrt{3}) . (2 - \sqrt{3})}{(2^{2} ) - (\sqrt{3})^{2}}

= \frac{10 - 5\sqrt{3} - 2\sqrt{3} + (\sqrt{3} )^{2} }{4 - 3}

= \frac{13 - 7\sqrt{3}}{1} = 13 - 7\sqrt{3}.

Replacing \frac{5 - \sqrt{3}}{2 + \sqrt{3}} with 13 - 7\sqrt{3} in the given equation, we get,

13 - 7\sqrt{3} = x + y\sqrt{3}.

On comparing the L.H.S and R.H.S of the above equation, we get,

x = 13 and y = - 7.

Hence, the values of x and y in \frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y \sqrt{3} are: x = 13 and y = - 7.

#SPJ2

Similar questions