Math, asked by sayanidas0, 5 months ago

if 5+root3/5-root3=x-root15 y, then x+y=?​

Answers

Answered by supriya2527
0

Answer:

The value of x+y = \frac{14-\sqrt{5}}{11}

11

14−

5

.

Given equation is \frac{5+\sqrt{3}}{5-\sqrt{3}}

5−

3

5+

3

= x-y√15

We have to find the value of x+y

We solve the equality first

\frac{5+\sqrt{3}}{5-\sqrt{3}}

5−

3

5+

3

= x-y\sqrt{15}x−y

15

We solve the Left Hand side of the equation,

\frac{5+\sqrt{3}}{5-\sqrt{3}}

5−

3

5+

3

Multiplying numerator and denominator with the conjugate of the denominator,

= \frac{5+\sqrt{3}}{5-\sqrt{3}}

5−

3

5+

3

× \frac{5+\sqrt{3}}{5+\sqrt{3}}

5+

3

5+

3

= \frac{(5+\sqrt{3})^2}{(5-\sqrt{3})(5+\sqrt{3})}

(5−

3

)(5+

3

)

(5+

3

)

2

= \frac{(5+\sqrt{3})^2}{5^2 - {(\sqrt{3})}^2}

5

2

−(

3

)

2

(5+

3

)

2

= \frac{25+10\sqrt{3}+3}{25 - 3}

25−3

25+10

3

+3

= \frac{28+10\sqrt{3}}{22}

22

28+10

3

= \frac{28}{22} + \frac{10\sqrt{3}}{22}

22

28

+

22

10

3

Now equating with the Right hand side of the equation,

\frac{28}{22} + \frac{10\sqrt{3}}{22}

22

28

+

22

10

3

= x-y\sqrt{15}x−y

15

Therefore, x = \frac{28}{22}

22

28

and -y√15 = \frac{10\sqrt{3}}{22}

22

10

3

x = \frac{14}{11}

11

14

and y√15 = - \frac{\sqrt{5}\sqrt{15}}{11}

11

5

15

x = \frac{14}{11}

11

14

and y = - \frac{\sqrt{5}}{11}

11

5

Now, x+y = \frac{14-\sqrt{5}}{11}

11

14−

5

Similar questions