Math, asked by sy4277255sunilkumary, 9 months ago

If 5 sec -4tan a=3cosec a then find the value of 27 cot a/ 5tan a -4sec a

Answers

Answered by MaheswariS
0

\textbf{Given:}

\bf\,5\,secA-4\,tanA=3\,cosecA

\textbf{To find:}

\textbf{The value of $\bf\dfrac{27\,cotA}{5\,cotA-4\,secA}$}

\textbf{Solution:}

\boxed{\begin{minipage}{11cm}$\text{consider}\\\\5\,secA-4\,tanA=3\,cosecA\\\\\text{Squaring on bothisdes, we get}\\\\25\,sec^2A+16\,tan^2A-40\,secA\,tanA=9\,cosec^2A\\\\25(1+tan^2A+16(sec^2A-1)-40\,secA\,tanA=9\,cosec^2A\\\\25\,tan^2A+16\,sec^2A+9-40\,secA\,tanA=9\,cosec^2A\\\\25\,tan^2A+16\,sec^2A-40\,secA\,tanA=9\,cosec^2A-9\\\\25\,tan^2A+16\,sec^2A-40\,secA\,tanA=9(cosec^2A-1)\\\\25\,tan^2A+16\,sec^2A-40\,secA\,tanA=9\,cot^2A\\\\(5\,tanA-16\,secA)^2=9\,cot^2A\\\\\text{Taking square root on bothsides, we get}\\\\5\,tanA-16\,secA=3\,cotA\\\\\implies\,9(5\,tanA-16\,secA)=27\,cotA\\\\\implies\bf\dfrac{27\,cotA}{5\,tanA-16\,secA}=9$\end{minipage}}

\textbf{Answer:}

\therefore\textbf{The value of $\bf\dfrac{27\,cotA}{5\,cotA-4\,secA}$ is 9}

Find more:

Prove that (tanA + secA ÷ cosecA + cotA)(tanA - secA ÷ cosecA - cotA) = 2(tanA×cosecA - cotA×secA)

https://brainly.in/question/8676527

(cotA/cotA-cot3A)-(tanA/tan3A-tanA)=1

https://brainly.in/question/9805113

Answered by ranjeetkumarsingh31
0

Answer:

Step-by-step explanation:

Similar questions