Math, asked by huzaifa2525, 7 months ago

If 5 sin A = 8cos A then the value of cot A is?

Answers

Answered by Asterinn
5

Given :

  • 5 sin A = 8cos A

To find :

  • the value of CotA

Concept used :

 \dfrac{ \sin(x) }{ \cos(x) }  =  \tan(x)

 \tan(x)  =  \dfrac{1}{ \cot(x) }

Solution :

 \implies 5 \sin(A)  = 8 \cos(A)

\implies 5  \times  \dfrac{ \sin(A) }{ \cos(A) } = 8

\implies   \dfrac{ \sin(A) }{ \cos(A) } =  \dfrac{8}{5}

We know that :-

\dfrac{ \sin(x) }{ \cos(x) }  =  \tan(x)

Therefore :-

\implies   { \tan(A) } =  \dfrac{8}{5}

we know that :-

\tan(x)  =  \dfrac{1}{ \cot(x) }

\implies   { \cot(A) } =  \dfrac{5}{8}

Answer :

   { \cot(A) } =  \dfrac{5}{8}

______________________

\large\bf\blue{Additional-Information}

1. Cosθ = base / hypotenuse

2. cossecθ = 1/ sinθ

3. sec θ = 1/cosθ

4. Cotθ = 1/ tanθ

5. Sin²θ+ Cos²θ= 1

6. Sec²θ - tan²θ = 1

7. cosec ²θ - cot²θ = 1

8. sin(90°−θ) = cos θ

9. cos(90°−θ) = sin θ

10. tan(90°−θ) = cot θ

11. cot(90°−θ) = tan θ

12. sec(90°−θ) = cosec θ

13. cosec(90°−θ) = sec θ

14. Sin2θ = 2 sinθ cosθ

15. cos2θ = Cos²θ- Sin²θ

\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &   \bf{0}^{ \circ} &  \bf{30}^{ \circ} &   \bf{45}^{ \circ}  &  \bf{60}^{ \circ} &   \bf{90}^{ \circ}  \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\  \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\  \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 &  \sqrt{3}  & \rm Not \: De fined \\  \\ \rm cosec A &  \rm Not \: De fined & 2&  \sqrt{2}  & \dfrac{2}{ \sqrt{3} } &1 \\  \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }&  \sqrt{2}  & 2 & \rm Not \: De fined \\  \\ \rm cot A & \rm Not \: De fined &  \sqrt{3} & 1  &  \dfrac{1}{ \sqrt{3} } & 0 \end{array}

Similar questions