Math, asked by patelneel46, 8 months ago

if 5 sin square theta + 3 cos square =4 then find the value of sin theta and cos theta

Answers

Answered by souravsarkar045
5

Answer:

Here is the answer.

Step-by-step explanation:

Given,

5 {sin}^{2}\theta + 3 {cos}^{2} \theta = 4 \\  =  > 5 {sin}^{2} \theta + 3(1 -  {sin}^{2} \theta) = 4 \\  =  > 5 {sin}^{2} \theta + 3 - 3 {sin}^{2} \theta = 4 \\  =  > 2 {sin}^{2} \theta = 4 - 3 \\  =  > {sin}^{2} \theta =  \frac{1}{2}  \\  =  >  sin\theta =  \sqrt{ \frac{1}{2} }  \\  =  > sin\theta =  \frac{1}{ \sqrt{2} }

\therefore \: sin\theta =  \frac{1}{ \sqrt{2} }  \\  =  > sin\theta = sin45\degree \\  =  > \theta = 45\degree

\therefore \: cos\theta \\  = cos45\degree \\  =  \frac{1}{ \sqrt{2} }

Similar questions