Math, asked by 9967266871rakesh, 1 day ago

If 5 sin theta - 12 cos theta = 0, then find the value of tan​

Answers

Answered by kalpak60
4

Given: 5 sin θ - 12 cos θ = 0

To find: The value of the tan θ

Solution: In mathematics, the branch which describes the angles of a triangle and sides of that triangle is termed trigonometry. The basic three functions of this trigonometry are cosine, sine, and tangent. All these functions are used to solve the problems related to trigonometry.

From above, we have

5 sin θ - 12 cos θ = 0

⇒ 5 sin θ = 12 cos θ

⇒ sin θ/ cos θ =12/5  [rearranging the sides]

⇒ tan θ = 12/5  [∵ tan θ = sin θ/ cos θ]

Hence the value of tan θ is 12/5.

HOPE IT HELPS

MARK AS BRAINLIEST :)

Answered by mathdude500
5

Appropriate Question :-

\rm \: If \: 5sin\theta  - 12cos\theta  = 0, \: find \: the \: value \: of \: tan\theta  \\

\large\underline{\sf{Given- }}

\rm \: 5sin\theta  - 12cos\theta  = 0 \\

\large\underline{\sf{To\:Find - }}

\rm \: tan\theta

\large\underline{\sf{Solution-}}

Given that,

\rm \: 5sin\theta  - 12cos\theta  = 0 \\

can be rewritten as

\rm \: 5sin\theta = 12cos\theta \\

\rm \: \dfrac{sin\theta }{cos\theta }  = \dfrac{12}{5}  \\

\rm\implies \:\rm \:\boxed{ \rm{ \: tan\theta   = \dfrac{12}{5} \: }}  \\

\rule{190pt}{2pt}

 \boxed{ \rm{ \:Additional\:Information}}

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(90 \degree - x) = cosx}\\ \\ \bigstar \: \bf{cos(90 \degree - x) = sinx}\\ \\ \bigstar \: \bf{tan(90 \degree - x) = cotx}\\ \\ \bigstar \: \bf{cot(90 \degree - x) = tanx}\\ \\ \bigstar \: \bf{cosec(90 \degree - x) = secx}\\ \\ \bigstar \: \bf{sec(90 \degree - x) = cosecx}\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 }\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions