Math, asked by heleena51, 2 months ago

if 5 sin theta =3 find the value of sec²theta-tan²theta/cosec²theta-cot²theta​

Answers

Answered by sandy1816
4

\huge\color{Black}\boxed{\colorbox{yellow}{❀Answer❀}}\\

 \: replace \: theta \: by \:  \alpha  \\ 5sin \alpha  = 3 \\ sin \alpha  =  \frac{3}{5}  \\ cosec \alpha =  \frac{5}{3}   \\ cos \alpha =  \sqrt{1 -  {sin}^{2} \alpha  }  \\ cos \alpha  =  \sqrt{1 -  \frac{9}{25} }  \\ cos \alpha  =  \frac{4}{5}  \\ sec \alpha  =  \frac{5}{4}  \\ tan \alpha  =  \frac{sin \alpha }{cos \alpha } =  \frac{ \frac{3}{5} }{ \frac{4}{5} }   =  \frac{3}{4}  \\ cot \alpha  =  \frac{4}{3}  \\ now  \:  \: \frac{ {sec}^{2}  \alpha  -  {tan}^{2}  \alpha  }{ {cosec}^{2} \alpha  -  {cot}^{2} \alpha }  \\  =  \frac{  ({ \frac{5}{4} })^{2}  -  ({ \frac{3}{4} })^{2}  }{( { \frac{5}{3} })^{2}  -  ({ \frac{4}{3} })^{2} }  \\  =  \frac{ \frac{25 - 9}{16} }{ \frac{25 - 16}{9} }  \\  =  \frac{ \frac{16}{16} }{ \frac{9}{9} }  \\  = 1

Similar questions