Math, asked by akhilasounderrajan, 10 months ago

If 5 sin theta =3,then find cos theta , tan theta, sec theta-cosec theta

Answers

Answered by mddilshad11ab
135

\sf\large\underline{Given:}

\sf{\implies 5sin\theta=3}

\sf\large\underline{To\: Find:}

\sf{\implies cos\theta=?}

\sf{\implies tan\theta=?}

\sf{\implies sec\theta-cosec\theta=?}

\sf\large\underline{Solution:}

  • In right angle triangle ABC in which AB=3 AC=5 and angle B=90° BC=?. Here we use Pythagoras theorem to calculate the length of BC. Just notice once on given attachment.

Pythagoras formula used

\sf\small{\implies base=\sqrt{hypotenous^2-perpendicular^2}}

\tt{\implies 5sin\theta=3\implies sin\theta=\dfrac{3}{5}}

\rm{\implies BC=\sqrt{AC^2-AB^2}}

\rm{\implies BC=\sqrt{5^2-3^2}}

\rm{\implies BC=\sqrt{25-9}}

\rm{\implies BC=\sqrt{16}=4}

By calculating we get here

\bf{\implies AB=3\:\:,BC=4\:\:,AC=5}

  • Now calculate value here

\rm{\implies cos\theta=\dfrac{BC}{AC}=\dfrac{4}{5}}

\rm{\implies tan\theta=\dfrac{AB}{BC}=\dfrac{3}{4}}

\bf{\implies sec\theta-cosec\theta}

\rm{\implies \dfrac{AC}{BC}-\dfrac{AC}{AB}}

\rm{\implies \dfrac{5}{4}-\dfrac{5}{3}}

\rm{\implies \dfrac{15-20}{12}}

\rm{\implies \dfrac{-5}{12}}

\sf\large{Hence,}

\sf{\implies cos\theta=\dfrac{4}{5}}

\sf{\implies tan\theta=\dfrac{3}{4}}

\sf{\implies sec\theta-cosec\theta=\dfrac{-5}{12}}

Attachments:

amitkumar44481: Great :-)
mddilshad11ab: thanks bhai ❤️
Answered by DARLO20
14

\bigstar \sf{\purple{\underline{\underline{\blue{To\:Find:-}}}}}

  • \tt{\cos{\theta}\:=\:?}

  • \tt{\tan{\theta}\:=\:?}

  • \tt{\sec{\theta}\:-\:\csc{\theta}\:=\:?}

\bigstar \sf{\blue{\underline{\underline{\purple{SOLUTION:-}}}}}

GIVEN :-

  • \tt{5\:\sin{\theta}\:=\:3\:}

See the attachment picture :-

  • There,
  1. sinθ = p/h
  2. cosθ = b/h
  3. tanθ = p/b
  4. cotθ = b/p
  5. secθ = h/b
  6. cosecθ = h/p

FORMULA :-

\tt{\underline{\green{\boxed{h^2\:=\:p^2\:+\:b^2}}}}

CALCULATION :-

\tt{\:\:\:\:\:{\implies\:\sin{\theta}\:=\:{\dfrac{3}{5}}\:}}

From the above equation,

  • sinθ = 3/5 = p/h

  1. p = 3
  2. h = 5

\tt{\underline{\blue{\boxed{b^2\:=\:h^2\:-\:p^2}}}}

\tt{\implies\:b\:=\:{\sqrt{h^2\:-\:p^2}}\:}

\tt{\implies\:b\:=\:{\sqrt{5^2\:-\:3^2}}\:}

\tt{\implies\:b\:=\:{\sqrt{(25\:-\:9)}}\:}

\tt{\implies\:b\:=\:{\sqrt{16}}\:}

\tt{\implies\:b\:=\:4}

  • So, b = 4

Now, Calculate all the values .

1) \checkmark\:\tt{\boxed{\cos{\theta}\:=\:{\dfrac{b}{h}}\:}}

\tt{\implies\:{\cos{\theta}\:=\:{\dfrac{4}{5}}\:}}

2) \checkmark\:\tt{\boxed{\tan{\theta}\:=\:{\dfrac{p}{b}}\:}}

\tt{\implies\:{\tan{\theta}\:=\:{\dfrac{3}{4}}\:}}

3) \checkmark\:\tt{\boxed{\sec{\theta}\:=\:{\dfrac{h}{b}}\:}}

\tt{\implies\:{\sec{\theta}\:=\:{\dfrac{5}{4}}\:}}

4) \checkmark\:\tt{\boxed{\csc{\theta}\:=\:{\dfrac{h}{p}}\:}}

\tt{\implies\:{\csc{\theta}\:=\:{\dfrac{5}{3}}\:}}

5) \checkmark\:\tt{\boxed{\sec{\theta}\:-\:\csc{\theta}\:}}

\tt{\:=\:{\dfrac{5}{4}}\:-\:{\dfrac{5}{3}}\:}

\tt{\:=\:-\:{\dfrac{5}{12}}\:}

Attachments:
Similar questions