Math, asked by adityasakpal417, 18 days ago

if 5 sinø-12 cos ø=0 find the values of sec ø and cosec ø​

Answers

Answered by NITESH761
0

Answer:

\rm  \cosec θ=\dfrac{13}{12}

\rm  \sec  θ  = \dfrac{13}{5}

Step-by-step explanation:

We have,

\rm 5 \sin θ -12 \cos θ=0

dividing by  \rm \cos θ

\rm 5 \tan θ -12 =0

\rm  \tan θ  = \dfrac{12}{5}

\rm  \tan ^2 θ  = \dfrac{144}{25}

\rm  \tan ^2 θ  +1= \dfrac{144}{25}+1

\rm  \sec ^2 θ  = \dfrac{144+25}{25}

\rm  \sec  θ  = \sqrt{\dfrac{169}{25}}

\rm  \sec  θ  = \dfrac{13}{5}

\rm 5 \sin θ -12 \cos θ=0

dividing by  \rm \sin θ

\rm 5  -12 \cot θ=0

\rm  \cot θ=\dfrac{5}{12}

\rm  \cot ^2 θ=\dfrac{25}{144}

\rm  \cot ^2 θ+1=\dfrac{25}{144}+1

\rm  \cosec ^2 θ=\dfrac{25+144}{144}

\rm  \cosec ^2 θ=\dfrac{169}{144}

\rm  \cosec ^2 θ=\dfrac{169}{144}

\rm  \cosec θ=\sqrt{\dfrac{169}{144}}

\rm  \cosec θ=\dfrac{13}{12}

Similar questions