Math, asked by BrainlyHelper, 1 year ago

If 5 tan θ − 4 = 0, then the value of \frac{5sin\Theta-4cos\Theta}{5sin\Theta+4cos\Theta} is
(a)\frac{5}{3}
(b) \frac{5}{6}
(c) 0
(d)\frac{1}{6}


maanabhi224: hlw PUBG
maanabhi224: what help?

Answers

Answered by nikitasingh79
1

SOLUTION :  

The correct option is (c) : 0

Given : 5 tan θ - 4 /  = 0

5 tan θ = 4  

tan θ = 4/5

In right angle ∆ ,  

tan θ =  perpendicular/base = 4/5

perpendicular = 4 , base = 5

Hypotenuse = √( perpendicular)² + (Base)²

[By Pythagoras theorem]

Hypotenuse = √ 4² + 5² = √16 + 25 = √41

Hypotenuse = √41

sinθ = perpendicular/hypotenuse = 4/√41

cos θ = base/ hypotenuse =  5/√41

The value of (5 sin θ - 4 cos θ  ) / (5 sin θ + 4 cos θ )  :  

=( 5 × 4/√41 - 4 × 5/√41) / ( 5 × 4/√41 + 4 × 5/√41)

= (20/√41 - 20/√41) /  (20/√41 +  20/√41)

= (0)/ (40/√41)

(5 sin θ - 4 cos θ  ) / (5 sin θ + 4 cos θ )  = 0  

Hence, the value of  (5 sin θ - 4 cos θ  ) / (5 sin θ + 4 cos θ )  is 0 .

HOPE THIS ANSWER WILL HELP YOU…

Answered by Anonymous
4
Given that :

5 \tan \alpha  - 4 = 0 \\  \\  =  > 5 \tan \alpha  = 4 \\  \\  =  >  \tan\alpha  =  \frac{4}{5}  \\  \\  =  >  \frac{ \sin\alpha  }{ \cos \alpha }  =  \frac{4}{5}  \\  \\  =  >  \sin \alpha   = 4 \: and \:  \cos \alpha  = 5

Now, we have to find the value of :

 \frac{5 \sin \alpha - 4 \cos \alpha    }{5 \sin \alpha   + 4 \cos \alpha }  \\  \\  =  >  \frac{5 \times 4 - 4 \times 5}{5 \times 4 + 4 \times 5}  \\  \\  =  >  \frac{20 - 20}{20 + 20}  \\  \\  =  >  \frac{0}{40}  \\  \\  =  > 0

Anonymous: yes
Anonymous: Bhai kisse baat kr rha h
Anonymous: my name is Anshul
Anonymous: thanks bro
Similar questions