If 5 tan θ − 4 = 0, then the value of is
(a)
(b)
(c) 0
(d)
maanabhi224:
hlw PUBG
Answers
Answered by
1
SOLUTION :
The correct option is (c) : 0
Given : 5 tan θ - 4 / = 0
5 tan θ = 4
tan θ = 4/5
In right angle ∆ ,
tan θ = perpendicular/base = 4/5
perpendicular = 4 , base = 5
Hypotenuse = √( perpendicular)² + (Base)²
[By Pythagoras theorem]
Hypotenuse = √ 4² + 5² = √16 + 25 = √41
Hypotenuse = √41
sinθ = perpendicular/hypotenuse = 4/√41
cos θ = base/ hypotenuse = 5/√41
The value of (5 sin θ - 4 cos θ ) / (5 sin θ + 4 cos θ ) :
=( 5 × 4/√41 - 4 × 5/√41) / ( 5 × 4/√41 + 4 × 5/√41)
= (20/√41 - 20/√41) / (20/√41 + 20/√41)
= (0)/ (40/√41)
(5 sin θ - 4 cos θ ) / (5 sin θ + 4 cos θ ) = 0
Hence, the value of (5 sin θ - 4 cos θ ) / (5 sin θ + 4 cos θ ) is 0 .
HOPE THIS ANSWER WILL HELP YOU…
Answered by
4
Given that :
Now, we have to find the value of :
Now, we have to find the value of :
Similar questions