If 5 tan theta = 4, find the value of 2sin theta - 3cos theta/4sin theta - 9cos theta
ASAP!!
Thank you ❣️❣️
Answers
It is given that 5 tan theta=4
So, tan theta=4/5
(2sin theta- 3cos theta)/(4sin theta-9cos theta)
Dividing both by cos theta, we get
(2sin theta- 3cos theta/cos theta)/(4sin theta-9cos theta/cos theta)
(2sin theta/cos theta -3cos theta/cos theta)/ (4sin theta/ cos theta -9cos theta / cos theta)
(2tan theta -3 )/(4tan theta - 9)
(2×4/5-3)/ (4×4/5-9)
(8/5×15/5)/(16/5-45/5)
(-7/5)/(-29/5)
=> 7/29
Given
→ 5 tan∅ = 4
→ tan∅ = 4/5
Solution
→ (2 sin∅ - 3 cos∅)/(4 sin∅ - 9 cos∅)
Dividing whole equation by cos∅. [Why? Because sin∅/cos∅ = tan∅]
→ (2 sin∅ - 3 cos∅)/cos∅/(4 sin∅ - 9 cos∅)/cos∅
→ (2 sin∅ - 3 cos∅)/cos∅/(4 sin∅ - 9 cos∅)/cos∅
→ (2 sin∅/cos∅ - 3 cos∅/cos∅)/(4 sin∅/cos∅ - 9 cos∅/cos∅)
→ (2 tan∅ - 3)/(4 tan∅ - 9)
→ (2 × 4/5 - 3)/(4 × 4/5 - 9)
→ (8/5 - 15/5)/(16/5 - 45/5)
→ (- 7/5)/(- 29/5)
→ 7/29