Math, asked by albharwad001, 4 months ago

if 5 tan theta =4 , write the value of (cos theta -sin theta / cos theta +sin theta) .​

Answers

Answered by Anonymous
8

Given:-

  • 5 tanθ = 4

To Find:-

  • The value of:-

  • \sf{\dfrac{Cos\theta - Sin\theta}{Cos\theta + Sin\theta}}

Solution:-

We have:-

  • 5 tanθ = 4

⇒ tanθ = 4/5

We know,

  • \boxed{\sf{Tan\theta = \dfrac{Sin\theta}{Cos\theta}}}

Hence we can write tanθ = 4/5 as:-

\sf{\dfrac{Sin\theta}{Cos\theta} = \dfrac{4}{5}}

On Comparing we get:-

  • Sinθ = 4
  • Cosθ = 5

Now,

We need to find the value of:-

\sf{\dfrac{Cos\theta - Sin\theta}{Cos\theta + Sin\theta}} . . . . . . . . . . (i)

Putting the value of Sinθ and Cosθ in (i)

= \sf{\dfrac{5-4}{5+4}}

= \sf{\dfrac{1}{9}}

∴ The value of \sf{\dfrac{Cos\theta - Sin\theta}{Cos\theta + Sin\theta} = \dfrac{1}{9}}

______________________________________

Some other things to be known:-

\boxed{\begin{array}{cc} \sf{Sin\theta = \dfrac{1}{cosec\theta}} & \sf{Cosec\theta = \dfrac{1}{Sin\theta}} \\\\ \sf{Cos\theta = \dfrac{1}{Sec\theta}} & \sf{Sec\theta = \dfrac{1}{Cos\theta}} \\\\ \sf{Tan\theta = \dfrac{1}{Cot\theta}} & \sf{Cot\theta = \dfrac{1}{Tan\theta}} \end{array}}

Also:-

\boxed{\begin{array} {cc} \sf{Tan\theta = \dfrac{Sin\theta}{Cos\theta}} & \sf{Cot\theta = \dfrac{Cos\theta}{Sin\theta}}\end{array}}

______________________________________

Similar questions