if 5(x–1) +4=34,then 5x–5+4=34 or 5x =34+1.
Answers
Let f(x)=3
Let f(x)=3 x−4
Let f(x)=3 x−4 +5
Let f(x)=3 x−4 +5 x−4
Let f(x)=3 x−4 +5 x−4 −34
Let f(x)=3 x−4 +5 x−4 −34f
Let f(x)=3 x−4 +5 x−4 −34f ′
Let f(x)=3 x−4 +5 x−4 −34f ′ (x)=3
Let f(x)=3 x−4 +5 x−4 −34f ′ (x)=3 x−4
Let f(x)=3 x−4 +5 x−4 −34f ′ (x)=3 x−4 ln3+5
Let f(x)=3 x−4 +5 x−4 −34f ′ (x)=3 x−4 ln3+5 x−4
Let f(x)=3 x−4 +5 x−4 −34f ′ (x)=3 x−4 ln3+5 x−4 ln5>0∀x∈R
Let f(x)=3 x−4 +5 x−4 −34f ′ (x)=3 x−4 ln3+5 x−4 ln5>0∀x∈RThus f is strictly increasing function, so it will have maximum one real root.
Let f(x)=3 x−4 +5 x−4 −34f ′ (x)=3 x−4 ln3+5 x−4 ln5>0∀x∈RThus f is strictly increasing function, so it will have maximum one real root.It can be observed that x=6 is satisfying above equation.
Let f(x)=3 x−4 +5 x−4 −34f ′ (x)=3 x−4 ln3+5 x−4 ln5>0∀x∈RThus f is strictly increasing function, so it will have maximum one real root.It can be observed that x=6 is satisfying above equation.Hence x=6 is the only root of the given equation.