Math, asked by msjaryal46, 11 months ago

If 5^x+1 + 5^x-1 =650 then find x​

Answers

Answered by Anonymous
23

❏ Formula Used:-

Index Formula

\sf\longrightarrow X{}^{m}\times X{}^{n}=X{}^{m+n}

\sf\longrightarrow \frac{X{}^{m}} {X{}^{n}}=X{}^{m-n}\:\: or\:\:=\frac{1}{X{}^{n-m}}

\sf\longrightarrow X{}^{m}\times Y{}^{m}={XY}^{m}

\sf\longrightarrow\frac{ X{}^{m}}{Y{}^{m}}=(\frac{X}{Y}){}^{m}

❏ Question:-

Q) Find the value of x, if;

\sf\longrightarrow 5{}^{x+1}+5{}^{x-1}=650

❏ Solution:-

\sf\longrightarrow 5{}^{x+1}+5{}^{x-1}=650

\sf\longrightarrow 5{}^{x}\times5{}^{1}+\frac{5{}^{x}}{5{}^{1}}=650

\sf\longrightarrow 5{}^{x}\times(5+\frac{1}{5})=650

\sf\longrightarrow 5{}^{x}\times(\frac{25+1}{5})=650

\sf\longrightarrow 5{}^{x}\times(\frac{26}{5})=650

\sf\longrightarrow 5{}^{x}=\cancel{650}\times\frac{5}{\cancel{26}}

\sf\longrightarrow 5{}^{x}=25\times5

\sf\longrightarrow 5{}^{x}=5{}^{2}\times5{}^{1}

\sf\longrightarrow 5{}^{x}=5{}^{2+1}

\sf\longrightarrow 5{}^{x}=5{}^{3}

[ comparing both sides ]

\sf\longrightarrow \boxed{\red{\large{x=3}}}

∴ The value of x is 3

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

#answerwithquality & #BAL

Similar questions