Math, asked by shubham1063, 1 year ago

If 50% of (x-y) = 30% of (x+y), then what % of y is x ?​

Answers

Answered by BhawnaAggarwalBT
2

Answer:

400%

Step-by-step explanation:

Given :-

50% of (x-y) = 30% of (x+y)

(x - y) \times  \frac{50}{100}  = (x + y) \times  \frac{30}{100}  \\  \\  \frac{1}{2} (x - y) =  \frac{3}{10}   \times (x + y) \\  \\  \frac{x}{2}   -   \frac{y}{2}  =  \frac{3x}{10}  +  \frac{3y}{10}  \\  \\  \frac{x}{2}  -  \frac{3x}{10}  =  \frac{3y}{10}  +  \frac{y}{2}  \\  \\  \frac{5x - 3x}{10}  =  \frac{3y + 5y}{10}  \\  \\ 2x = 8y \\  \\ x = 4y \\  \\ x =  \frac{400 \times y}{100}  \\  \\ x =  \frac{400}{100}  \times y \\  \\ 400\% \: of \: y \: is \: equal \: to \: x

hope this will help you

Similar questions