if 50% of (x-y) =30% of (X+y),then what percent of X is y
Answers
Explanation:
Answer:
25\% \: of \: x\: is\: y25%ofxisy
Step-by-step explanation:
\begin{gathered}50\% \: of\: (x-y)\\=30\% \: of \: (x+y)\end{gathered}
50%of(x−y)
=30%of(x+y)
\begin{gathered}\implies \frac{50}{100}\times (x-y)\\=\frac{30}{100}\times (x+y)\end{gathered}
⟹
100
50
×(x−y)
=
100
30
×(x+y)
/* Multiply both sides by 10, we get */
\implies 5(x-y)=3(x+y)⟹5(x−y)=3(x+y)
\implies 5x-5y=3x+3y⟹5x−5y=3x+3y
\implies 5x-3x = 3y+5y⟹5x−3x=3y+5y
\implies 2x = 8y⟹2x=8y
\implies x = \frac{8y}{2}⟹x=
2
8y
\implies x = 4y⟹x=4y
\implies y = \frac{1}{4}\times x⟹y=
4
1
×x
\implies y = \frac{1}{4}\times 100\%\: of\: y⟹y=
4
1
×100%ofy
\implies y = \left(\frac{100}{4}\right)\%\times x⟹y=(
4
100
)%×x
\implies y = 25\%\: of \: x⟹y=25%ofx
Therefore,
25\% \: of \: x\: is\: y25%ofxisy