Math, asked by gitasarmah752, 10 months ago

If 50% of (x-y) = 40% of (x+y) then what percent of x is y​

Answers

Answered by Rohit18Bhadauria
10

Answer:

See this attachment

This is the best possible answer

Hope you have understood

<marquee>⭐Please mark it as⭐</marquee>

\huge\underline\mathcal\red{Brainliest}

</p><p>\huge{\boxed{\mathbb\green{\fcolorbox{red}{blue}{Thank\:You}}}}

Attachments:
Answered by TRISHNADEVI
22

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION\:  \: } \mid}}}}}

 \underline{ \mathfrak{ \:  \: Given, \:  \: }} \\  \\  \text{ \red{50\%  of (x - y) = 40\% of (x + y)}} \\  \\  \underline{ \mathfrak{ \:  \:To \:  \:   find  \: :-  \: }} \\  \\  \text{ \red{The \:  pecent  \: of  \: x \:  that \:   is \:   y = ?}}

 \underline{ \mathfrak{ \:Now, \: }}  \\  \\  \sf{50\% \:  \: of \:  \: (x - y) \:  =  \:  \frac{50}{100}  \times (x - y)} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\sf{=  \frac{1}{2} (x - y)}

 \underline{ \mathfrak{ \:  And, \: }}\\  \\  \sf{40\% \:  \: of \:  \: (x  +  y) \:  =  \:  \frac{40}{100}  \times (x  +  y) }\\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{=  \frac{2}{5} (x  + y)}

 \underline{ \mathfrak{ \:  \: According   \:  \: to   \:  \: Question,  \:  \: }}

 \tt{ \red{50\%  \:  \:  of  \:  \: (x - y) = 40\%  \:  \: of  \:  \:  (x + y)  }}\\  \\  \tt{  \blue{\implies \:  \frac{1}{2} (x  - y) =  \frac{2}{5} (x + y) }}\\  \\ \tt{  \green{\implies \:  \frac{x - y}{2}  = \frac{2(x + y)}{5}} } \\  \\ \tt{ \pink{\implies \:\frac{x  - y}{2}  =  \frac{2x + 2y}{5} }}  \\  \\ \tt{\implies \: 5(x - y) = 2(2x + 2y) }\\  \\ \tt{\purple{ \implies \: 5x - 5y = 4x + 4y }}\\  \\\tt{  \purple{\implies \:5x - 4x = 4y + 5y}} \\  \\\tt{ \implies \: x = 9y }\\  \\ \tt{ \pink{\implies \:9y = x }}\\   \\ \tt{\green{ \implies \: y =  \frac{1}{9} x}} \\   \\ \tt{\blue{ \implies \: y =  (\frac{1}{9}  \times 100)x}} \\  \\   \:  \:  \:  \:  \: \tt{\therefore \:  \red{y = 11.11 \: \%  \: \:of \:  \:  x}}

 \therefore \:  \:  \text{If  \:  \:  \pink{50\%  of (x-y) = 40\% of (x+y)} \: then} \\  \:  \:  \:  \:  \:  \:  \:  \text{ \pink{11.11} \: percent \: of \: x \: is \: y.}

Similar questions