Math, asked by manshukumar980, 3 months ago

)If (5a+ 9b) (5c-9d) = (5a — 9b) (5c + 9d), using properties of
proportion, prove that a : b = c : d.

Answers

Answered by mathdude500
2

Basic Concept Used :-

\rm :\longmapsto\:If \: \dfrac{a}{b}  = \dfrac{c}{d}  \: then

 \bf \: 1. \:  \: \dfrac{a}{c}  = \dfrac{b}{d}  \:  \:   \:  \: \{ \: alternendo \}

 \bf \: 2. \:  \: \dfrac{a + b}{b}  = \dfrac{c + d}{d}  \:  \:  \{componendo \}

 \bf \: 3. \:  \: \dfrac{a  -  b}{b}  = \dfrac{c  -  d}{d}  \:  \:  \{dividendo \}

 \bf \: 4. \:  \: \dfrac{a + b}{a - b}  = \dfrac{c + d}{c - d}  \:  \:  \{componendo  \: and \: dividendo\}

 \bf \: 5. \:  \: \dfrac{b}{a}  = \dfrac{d}{c}  \:  \:   \:  \: \{ \: invertendo \}

 \bf \: 6. \:  \: ad = bc

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:(5a + 9b)(5c - 9d) = (5a  -  9b)(5c  +  9d)

can be rewritten as

\rm :\longmapsto\:\dfrac{5a + 9b}{5a - 9b}  = \dfrac{5c + 9d}{5c - 9d}

Apply Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{5a +  \cancel{9b} + 5a - \cancel{9b}}{\cancel{5a}  + 9b - \cancel{5a} + 9b}  = \dfrac{5c + \cancel{9d} + 5c - \cancel{9d}}{\cancel{5c}  +  9d - \cancel{5c} + 9d}

\rm :\longmapsto\:\dfrac{\cancel{10} \: a}{\cancel{18} \: b}  = \dfrac{\cancel{10} \: c}{\cancel{18} \: d}

\rm :\implies\:\dfrac{a}{b}  = \dfrac{c}{d}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Similar questions