Math, asked by vrushalimanojga, 1 year ago

if 5cos(2x) + 2cos^2 (x/2) + 1 =0 find x

Answers

Answered by ps4410000pbbw1o
13
I hope it's helps you
Attachments:
Answered by boffeemadrid
9

Answer:

x=2nπ±π/3

Step-by-step explanation:

Since, 5cos(2x)+2cos^{2}\frac{x}{2}+1=0

Using, cos(2x)= 2cos^{2}x-1

5(2cos^{2}x-1)+2cos^{2}\frac{x}{2}+1=0

10cos^{2}x-5+1+cosx+1=010cos^{2}x+cosx-3=0

10cos^{2}x+6cosx-5cosx-3=0

2cosx(5cosx+3)-1(5cosx+3)=0

(2cosx-1)(5cosx+3)=0

If 2cosx-1=0cosx=\frac{1}{2}x=cos^{-1} (\frac{1}{2})

x=\frac{\pi }{3}

And, if 5cosx+3=0cosx=\frac{-3}{5}x=cos^{-1}(\frac{-3}{5})

Therefore, In general, x=2n\pi±\frac{\pi }{3}

Similar questions