Math, asked by bajracharyasamprada9, 2 months ago

if 5Cos A + 12sinA = 13 find the value of tanA​

Answers

Answered by Diabolical
0

Answer:

The answer will be -8.

Step-by-step explanation:

Given;

5cos A + 12sinA = 13

Add 7cos A on the both side of the given equation;

7cos A + 5cos A + 12sinA = 13 + 7cos A

12cos A + 12sin A = 13 + 7cos A

12(cos A + sin A) = 13 + 7cos A

12 (1) = 13 + 7cos A. (since, cos A + sin A = 1)

12 - 13 = 7cos A

-1/7 = cos A

cos A = -1/7

Now,minus 7sin A on the both side of the given equation;

5cos A + 12sinA - 7sin A= 13 - 7sin A

5cos A + 5sin A = 13 - 7sin A

5(cos A + sin A) = 13 - 7sin A

5 (1) = 13 - 7sin A. (since, cos A + sin A = 1)

7sin A = 13 - 5

sin A = 8/7

Now, tan A = sin A/cos A

Thus, tan A = (8/7) / (-1/7)

= 8/-1

= -8.

That's all.

Answered by mathdude500
5

\large\underline{\sf{Given- }}

  • 5 cosA + 12 sinA = 13

\large\underline{\sf{To\:Find - }}

  • tanA

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{\bf{\: \dfrac{1}{cosA}  = secA}}

 \boxed{ \bf{ \: \dfrac{1}{sinA}  = cosecA}}

 \boxed{ \bf{ \: \dfrac{sinA}{cosA}  = tanA}}

 \boxed{ \bf{ \:  {sec}^{2}A -  {tan}^{2}A = 1}}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:5cosA + 12sinA = 13

  • On dividing both sides by cosA, we get

\rm :\longmapsto\:5\dfrac{cosA}{cosA}  + 12\dfrac{sinA}{cosA}  = \dfrac{13}{cosA}

\rm :\longmapsto\:5 + 12tanA = 13secA

  • On squaring both sides, we get

\rm :\longmapsto\: {(5 + 12tanA)}^{2}  =  {(13secA)}^{2}

\rm :\longmapsto\:25 + 144 {tan}^{2}A + 120tanA = 169 {sec}^{2}A

\rm :\longmapsto\:25 + 144 {tan}^{2}A + 120tanA = 169 (1 + {tan}^{2}A)

\rm :\longmapsto\:25 + 144 {tan}^{2}A + 120tanA = 169 + 169 {tan}^{2}A

\rm :\longmapsto\:25 {tan}^{2}A - 120tanA + 144 = 0

\rm :\longmapsto\: {(5tanA)}^{2}  +  {(12)}^{2}  - 2 \times 5tanA \times 12 = 0

\rm :\longmapsto\: {(5tanA - 12)}^{2}  = 0

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \bf{ \:  \because \:  {x}^{2} +  {y}^{2} - 2xy =  {(x - y)}^{2}}}

\rm :\longmapsto\:5tanA - 12 = 0

\rm :\longmapsto\:5tanA = 12

\bf\implies \:tanA = \dfrac{12}{5}

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information :-

 \boxed{ \bf{ \:  {sin}^{2}x +  {cos}^{2}x = 1}}

 \boxed{ \bf{ \:  {sin}^{2}x = 1 -  {cos}^{2}x}}

 \boxed{ \bf{ \:  {cos}^{2} x = 1 -  {sin}^{2} x}}

 \boxed{ \bf{ \:  {cosec}^{2} x -  {cot}^{2} x = 1}}

 \boxed{ \bf{ \:  {cosec}^{2} x = 1 +  {cot}^{2} x}}

 \boxed{ \bf{ \:  {cot}^{2} x =  {cosec}^{2} x - 1}}

Similar questions