if 5Cos A + 12sinA = 13 find the value of tanA
Answers
Answer:
The answer will be -8.
Step-by-step explanation:
Given;
5cos A + 12sinA = 13
Add 7cos A on the both side of the given equation;
7cos A + 5cos A + 12sinA = 13 + 7cos A
12cos A + 12sin A = 13 + 7cos A
12(cos A + sin A) = 13 + 7cos A
12 (1) = 13 + 7cos A. (since, cos A + sin A = 1)
12 - 13 = 7cos A
-1/7 = cos A
cos A = -1/7
Now,minus 7sin A on the both side of the given equation;
5cos A + 12sinA - 7sin A= 13 - 7sin A
5cos A + 5sin A = 13 - 7sin A
5(cos A + sin A) = 13 - 7sin A
5 (1) = 13 - 7sin A. (since, cos A + sin A = 1)
7sin A = 13 - 5
sin A = 8/7
Now, tan A = sin A/cos A
Thus, tan A = (8/7) / (-1/7)
= 8/-1
= -8.
That's all.
- 5 cosA + 12 sinA = 13
- tanA
Given that,
- On dividing both sides by cosA, we get
- On squaring both sides, we get
─━─━─━─━─━─━─━─━─━─━─━─━─