Math, asked by rahulkk9512, 1 year ago

If 5cos A=7sin A find sin A and cos A

Answers

Answered by iHelper
6
Hello!

\boxed{\sf 5\: cosA = \sf 7 \:sinA}

\textbf{Squaring\: both \:sides \:} :

25 cos²A = 49 sin²A

⇒ 49 sin²A = 25 (1 - sin²A) 

⇒ 49 sin²A +25 sin²A = 25

⇒ 74 sin²A = 25

⇒ sin²A = \dfrac{\sf 25}{\sf 74}

\textbf{sinA} = \dfrac{\sf 5}{\sqrt{74}}

Therefore,

\textbf{cosA} = \dfrac{\sf 7}{\sqrt{74}}

Then :

\dfrac{\sf ( 7\:sinA + 5\:cos A )}{\sf ( 5\:sinA + 7\:cosA )}

= \dfrac{\sf 35/\sqrt{74} + \sf 35/\sqrt{74}}{\sf 25/\sqrt{74} + \sf 49/\sqrt{74}}

= \dfrac{\sf 70/\sqrt{74}}{\sf 74/\sqrt{74}}

= \boxed{\dfrac{\sf 35}{\sf 37}}

Cheers!
Similar questions