Math, asked by deekshakh58, 10 months ago

if 5cos theta=6sin theta evaluate tan theta ​

Attachments:

Answers

Answered by SarcasticL0ve
7

Given:-

  • \sf 5 \cos{ \theta} = 6 \sin{ \theta}

To find:-

  • Value of :-

  1. \sf \tan{ \theta}
  2. \sf \dfrac{ 12 \sin{ \theta} - 3 \cos{ \theta}}{12 \sin{ \theta} + 3 \cos{ \theta}}

Solution:-

\sf 5 \cos{ \theta} = 6 \sin{ \theta}

:\implies\sf \dfrac{ \sin{ \theta}}{ \cos{ \theta}} = \dfrac{5}{6}

i) \sf \tan{ \theta}

We know that,

\sf \tan{ \theta} = \dfrac{ \sin{ \theta}}{ \cos{ \theta}}

Then, Value of \sf \tan{ \theta} is,

\sf \tan{ \theta} = \bf{ \dfrac{5}{6}}

\rule{200}3

ii) \sf \dfrac{ 12 \sin{ \theta} - 3 \cos{ \theta}}{12 \sin{ \theta} + 3 \cos{ \theta}}

Divide Numerator and denominator by \sf \cos{ \theta}

:\implies\sf \dfrac{ \dfrac{12 \sin{ \theta} - 3 \cos{ \theta}}{ \cos{ \theta}}}{ \dfrac{12 \sin{ \theta} - 3 \cos{ \theta}}{ \cos{ \theta}}} \\\\ :\implies\sf \dfrac{ 12 \dfrac{ \sin{ \theta}}{ \cos{ \theta}} - 3 \dfrac{ \cos{ \theta}}{ \cos{ \theta}}}{12 \dfrac{ \sin{ \theta}}{ \cos{ \theta}} + 3 \dfrac{ \cos{ \theta}}{ \sin{ \theta}}} \\\\ :\implies\sf \dfrac{ 12 \tan{ \theta} - 3}{12 \tan{ \theta} + 3} \\\\ :\implies\sf \dfrac{ \cancel{12} \times \dfrac{5}{ \cancel{6}} - 3}{ \cancel{12} \times \dfrac{5}{ \cancel{6}} + 3}

:\implies\sf \dfrac{2 \times 5 - 3}{10 + 3}

:\implies\sf \dfrac{10 - 3}{2 \times 5 + 3}

:\implies\sf \bf{ \dfrac{7}{13}}

\rule{200}3

Attachments:
Similar questions