Math, asked by dhruvpurohit4u, 7 months ago

if 5cot 0=12 find the value of coseco+seco?​

Answers

Answered by Anonymous
2

SOLUTION :

 \bull \:  \:  \:  \:  \:  \:  \: { \underline{ \underline{ \sf \: 5 \cot \theta = 12}}} \\  =  >   \sf \: \cot \theta =  \frac{12}{5}  \\  =  >  { \cot}^{2}  \theta =  \frac{144}{25}  \\  =  >  { \cosec}^{2}  \theta - 1 =  \frac{144}{25}  \\  =  >  \cosec \theta =  \frac{13}{5}  \underline{ \:  \:  \:  \:  \:  \:  \:  \: }(1)

 \underline{ \tt \:{from \: eqn \: 1}}

 \cosec \theta =  \frac{13}{5}  \\  =  >   { \sin}^{2}  \theta =  \frac{25}{169}   \\  =  > 1 -  { \cos}^{2}   \theta =  \frac{25}{169}  \\  =  >  \cos \theta =  \frac{12}{13}  \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }(2)

 \underline{ \tt{adding \: eqn \: (1) \: and \: (2)}}

 \cosec \theta \:  +  \sec \theta  \\  =  \frac{13}{5}  +  \frac{12}{13}  \\  =  \boxed{   \frac{229}{65} }

Similar questions