Math, asked by jabrajalaj1177, 1 year ago

if 5cot theta =3 find the value of 5sin thieta -3cos thita /4sin theta +3cos theta

Answers

Answered by nishita19
71
I hope that it's helpful for you
Attachments:
Answered by harendrachoubay
32

The value of\dfrac{5\sin \theta -3\cos \theta}{4\sin \theta +3\cos \theta}=\dfrac{16}{29}.

Step-by-step explanation:

We have,

5\cot \theta=3

∴  \cot \theta=\dfrac{3}{5}

To find, the value of \dfrac{5\sin \theta -3\cos \theta}{4\sin \theta +3\cos \theta}=?

\dfrac{5\sin \theta -3\cos \theta}{4\sin \theta +3\cos \theta}

Dividing numerator and denominator by \sin \theta, we get

\dfrac{\dfrac{5\sin \theta -3\cos \theta}{\sin \theta}}{\dfrac{4\sin \theta +3\cos \theta}{\sin \theta}}

=\dfrac{5-3\cot \theta}{4+3\cot \theta}

Put \cot \theta=\dfrac{3}{5} , we get

\dfrac{5-3\times \dfrac{3}{5}}{4+3\times \dfrac{3}{5}}

=\dfrac{5-\dfrac{9}{5}}{4+\dfrac{9}{5}}

=\dfrac{\dfrac{25-9}{5}}{\dfrac{20+9}{5}}

=\dfrac{16}{29}

Hence, the value of\dfrac{5\sin \theta -3\cos \theta}{4\sin \theta +3\cos \theta}=\dfrac{16}{29}.

Similar questions