Math, asked by tusharkajaniya03, 6 days ago

if 5sec∅-12cosec∅=0,find the values of sec∅,cos∅,and sin∅​

Answers

Answered by lalith2004ky
0

Answer:

5 \sec(Ø)  - 12 \cosec(Ø)  = 0 \\ 5 \times  \frac{1}{ \cos(Ø) }  - 12 \times  \frac{1}{ \sin(Ø) }  = 0 \\  \frac{5}{ \cos(Ø) }  -  \frac{12}{ \sin(Ø) }  = 0 \\  \frac{5 \sin(Ø) - 12 \cos(Ø)  }{ \sin(Ø) \cos(Ø)  }  = 0 \\ 5 \sin(Ø) - 12 \cos(Ø) = 0 \\  5 \sin(Ø)  =  12 \cos(Ø) \\  \frac{ \ \sin (Ø) }{ \cos(Ø) }  =  \frac{12}{5} \\  \tan(Ø)  =  \frac{12}{5}

TanØ = Opposite side/Adjacent side = 12/5

In a Right-angled triangle,

by pythogoras theorem,

(Hypotenuse)^2 = (Altitude)^2 + (Base)^2

In a ∆ABC right angled at B,

and angle ACB = Ø,

AC^2 = AB^2 + BC^2

AC^2 = 12^2 + 5^2

AC^2 = 144 + 25

AC^2 = 169

AC = 13

Hypotenuse = 13

Thus, if TanØ = 12/5, the values of,

  • SecØ = 13/5
  • CosØ = 5/13
  • SinØ = 12/13
Similar questions