Math, asked by varalakshmihq1928, 1 month ago

If 5sin theta =3,then find cosec theta​

Answers

Answered by sharanyalanka7
5

Answer:

Step-by-step explanation:

Given,

5sin\theta = 3

To Find :-

cosec\theta =?

Solution :-

5sin\theta = 3

5\times sin\theta = 3

Transposing 5 to R.H.S :-

sin\theta = \dfrac{3}{5}

We know that :-

sin\theta = \dfrac{1}{cosec\theta}

\implies \dfrac{1}{cosec\theta} = \dfrac{3}{5}

Taking Reciprocal on both sides :-

\dfrac{1}{\dfrac{1}{cosec\theta}} = \dfrac{1}{\dfrac{3}{5}}

\dfrac{cosec\theta}{1} = \dfrac{5}{3}

cosec\theta = \dfrac{5}{3}

Know More :-

Trigonometric Relations :-

1) sin\theta = \dfrac{1}{cosec\theta}

2) cos\theta = \dfrac{1}{sec\theta}

3) tan\theta =  \dfrac{1}{cos\theta}

Answered by hemanji2007
18

Question:

5 \sin( \alpha )  = 3 \: then \: find \:  \csc( \alpha )

To Find:

 \csc( \alpha )

Answer:

5 \sin( \alpha )  = 3 \\  \sin( \alpha  )  =  \frac{3}{5 }  \\ we \: know \: tha t \:   \sin( \alpha )   =  \frac{1}{ \csc( \alpha ) }

here \: we \: have \: to \: find \: the \: value \: of \:  \csc( \alpha )

 \csc( \alpha )  =  \frac{5}{3}

Answer:

 \csc( \alpha )  =  \frac{5}{3}

More Information:

Trigon metric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonmetric ratios

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Similar questions