Math, asked by TusharMahajan, 1 year ago

if 5sinA=4, find the value of tanA+secA

Answers

Answered by TeenTitansGo
4

5  \sin(a)  = 4 \\  \\  =>  \sin(a)  =  \frac{4}{5}  \\  \\  \\  \mathbf{we \: know \:  \sin(a)  =  \frac{height}{hypotenuse} }

Hence,


 \frac{height}{hypotenuse}  =  \frac{4}{5}


Now, let height = 4x and hypotenuse = 5x


By Pythagoras theorem,


( 5x )² = ( 4x )² + ( base )²

=> 25x² - 16x² = base²

=> 9x² = base²

=> ( 3x )² = base²

=> 3x





Hence,

tanA + secA

 =>  \frac{height}{base}  +  \frac{base}{hypotenuse}  \\  \\  =>  \frac{4x}{3x}  +  \frac{3x}{5x}  \\  \\    =>  \frac{4}{3}  +  \frac{3}{5}  \\  \\  =>  \frac{20 + 9}{15}  \\  \\  =  >  \frac{29}{15}



tanA + secA = 29 / 15
Similar questions