Math, asked by shreyassuhas736, 2 months ago

if 5tan teta =12find the values of cos teta and sin teta​

Answers

Answered by Anonymous
13

Given :-

{5tan\theta} = 12

To find :-

{cos\theta,  sin\theta}

SOLUTION:-

As they given ,

{5tan\theta} = 12 then ,

{tan\theta}= \dfrac{12}{5}

As we know that ,

{tan\theta} = \dfrac{opposite}{adjacent}

So, ATQ

{opposite\: side = 12}

{adjacent \: side= 5}

From Pythagoras theorem,

We can find hypotenuse

Pythagoras theorem

(opposite \: side) {}^{2}  + (adjacent \:  \: side) {}^{2}  = (hypotenuse){}^2

(12) {}^{2}  + (5) {}^{2}  = hyp {}^{2}

144 + 25 = hyp {}^{2}

169 = hyp {}^{2}

13 {}^{2}  = hyp {}^{2}

hyp = 13

So, hypotenuse = 13

As we know that ,

{cos\theta}= \dfrac{Adjacent}{Hypotenuse}

☆{cos\theta} = \dfrac{5}{13}

{sin\theta} = \dfrac{Opposite}{Hypotenuse}

☆{sin\theta} = \dfrac{12}{13}

Know more :-

Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigonometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonometric ratios

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions