Math, asked by Puppy53, 1 year ago

​if 5tan tita = 4, find the value of 5sin tita- 3 cos tita+5sin tita -2cos tita​

Answers

Answered by Anonymous
0

 \bf \LARGE \it Hey  \: User!!!

given :-

5tan∅ = 4

therefore tan∅ = 4/5

consider any right angle ∆abc,

where AB is the base, BC is the perpendicular and AC is the hypotenuse.

we know that tan∅ = perpendicular/base

 \rm  \small \therefore  \: perpendicular = 4 \: and \: base  = 5
by Pythagoras theorem we get :-

>> AC² = AB² + BC²
>> AC² = 4² + 5²
>> AC² = 16 + 25
>> AC² = 41
>. AC = √41

▶sin∅ = 4/√41
▶cos∅ = 5/√41

 \therefore \rm  \small 5\sin \theta - 3 \cos \theta + 5 \sin \theta - 2 \cos \theta \\  \rm \tiny = 5 \times  \frac{4}{ \sqrt{41} }  - 3 \times  \frac{5}{ \sqrt{41} }  + 5 \times  \frac{4}{ \sqrt{41} }  - 2 \times  \frac{5}{41}  \\  \tiny =  \frac{20}{ \sqrt{41} }  -  \frac{15}{ \sqrt{41} }  +  \frac{20}{ \sqrt{41} }  -  \frac{10}{ \sqrt{41} }  \\   \tiny =  \boxed{ \frac{15}{ \sqrt{41} } } \rm  \small \:  final  \: answer

 \bf \LARGE \it Cheers!!!


Attachments:
Similar questions