If
5tanx = 12, find the value of sec x + cosec x
Answers
Given
⇒5tanx = 12
To find
⇒secx + cosecx
Now Take
⇒5tanx = 12
⇒tanx = 12/5
⇒tanx = 12/5 =p/b
we get
⇒Perpendicular(p) = 12 and Base(b) = 5
We have to to find Hypotenuse(h) So we use Pythagoras theorem
⇒(h)² = (p)² + (b)²
⇒(h)² = (12)²+(5)²
⇒h² = 144+25
⇒h² = 169
⇒h=√(169)
⇒h=13
We know that
⇒secx=h/b and cosecx = h/p
We have
⇒h=13 , b=5 and p=12
Put the value
⇒secx+cosecx
⇒13/5 + 13/12
⇒(13×12 + 13×5)/60
⇒(156+65)/60
⇒221/60
Answer:
Step-by-step explanation:
⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀
⠀⠀⠀
⠀⠀⠀⠀⠀
⠀⠀⠀
⠀⠀⠀
⠀⠀⠀
⠀⠀⠀
Let the perpendicular side of a triangle be 12k and the Adjacent side be 5k. We don't know the value of Hypotenuse of the triangle.
⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀
⠀⠀⠀⠀
Apply the formula:
⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀
⠀⠀⠀
⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀
- Perpendicular = 12k
- Adjacent side = 5k
- Hypotenuse = 13k
⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀⠀⠀
⠀⠀
Now, According to the question,
⠀⠀
⠀⠀⠀
⠀⠀⠀⠀