Math, asked by yashj9346, 7 months ago

If 5x=4y then find the value of the ratio 3x² + y²/3x² - y²​

Answers

Answered by SamVarghese
20

Step-by-step explanation:

5x=4y

x=4y/5

[3(4y/5)^2 + y^2]

[3(4y/5)^2 - y^2]

3×16y^2 +y^2

25

_____________

3×16y^2 -y^2

25

48y^2+25y^2

____________

48y^2-25y^2

73y^2

_____

23y^2

73

23

Answered by qwsuccess
2

Given,

5x = 4y.

To Find,

The value of the expression, 3x^{2} +\frac{y^{2} }{3x^{2} } -y^{2}.

Solution,

As given, 5x=4y.

So we can say x= \frac{4y}{5}.

x^{2} =(\frac{4y}{5} )^{2}

⇒3x^{2}=3×\frac{16y^{2} }{25}.

⇒3x^{2}=\frac{48y^{2} }{25}.

So,

3x^{2} +\frac{y^{2} }{3x^{2} } -y^{2}

=\frac{48y^{2} }{25}+\frac{y^{2} }{\frac{48y^{2} }{25} }-y^{2}.

=\frac{48y^{2} }{25}-y^{2}+\frac{25}{48}.

=\frac{48y^{2} -25y^{2}  }{25}+\frac{25}{48}.

=\frac{23y^{2} }{25}+\frac{25}{48}.

=\frac{23y^{2}.48+625 }{25.48}

\frac{1104y^{2}+625 }{1200}.

Hence, the value of  3x^{2} +\frac{y^{2} }{3x^{2} } -y^{2} is  \frac{1104y^{2}+625 }{1200}.

Similar questions