Math, asked by gvb93, 2 months ago

if 5x+6y:8x+5y=8:9, find x:y​

Answers

Answered by BrainlyTwinklingstar
2

Answer

\sf \dashrightarrow 5x + 6y = 8 \: \: ---(ii)

\sf \dashrightarrow 8x + 5y = 9 \: \: --- (ii)

By first equations,

\sf \dashrightarrow 5x + 6y = 8

\sf \dashrightarrow 5x = 8 - 6y

\sf \dashrightarrow x = \dfrac{8 - 6y}{5}

Now, let's find the value of y by second equation.

\sf \dashrightarrow 8x + 5y = 9

\sf \dashrightarrow 8 \bigg( \dfrac{8 - 6y}{5} \bigg) + 5y = 9

\sf \dashrightarrow \dfrac{64 - 48y}{5} + 5y = 9

\sf \dashrightarrow \dfrac{64 - 48y + 25y}{5} = 9

\sf \dashrightarrow \dfrac{64 - 23y}{5} = 9

\sf \dashrightarrow 64 - 23y = 9 \times 5

\sf \dashrightarrow 64 - 23y = 45

\sf \dashrightarrow -23y = 45 - 64

\sf \dashrightarrow -23y = -19

\sf \dashrightarrow y = \dfrac{-19}{-23}

\sf \dashrightarrow y = \dfrac{19}{23}

Now, let's find the value of x by first equation.

\sf \dashrightarrow 5x + 6y = 8

\sf \dashrightarrow 5x + 6 \bigg( \dfrac{19}{23} \bigg) = 8

\sf \dashrightarrow 5x + \dfrac{114}{23} = 8

\sf \dashrightarrow \dfrac{115x + 114}{23} = 8

\sf \dashrightarrow 115x + 114 = 8 \times 23

\sf \dashrightarrow 115x + 114 = 184

\sf \dashrightarrow 115x = 184 - 114

\sf \dashrightarrow 115x = 70

\sf \dashrightarrow x = \dfrac{70}{115}

\sf \dashrightarrow x = \dfrac{14}{23}

Hence, the values of x and y are \sf \dfrac{14}{23} and \sf \dfrac{19}{23} respectively.

Similar questions